Page 33 - 2019_01-Haematologica-web
P. 33

IBMFS in zebrafish
7. Toki T, Yoshida K, Wang R, et al. De Novo Mutations Activating Germline TP53 in an Inherited Bone-Marrow-Failure Syndrome. Am J Hum Genet 2018;103(3):440-447.
8. Glaubach T, Minella AC, Corey SJ. Cellular stress pathways in pediatric bone marrow failure syndromes: many roads lead to neu- tropenia. Pediatr Res. 2014;75(1-2):189-195.
9. Garaycoechea JI, Crossan GP, Langevin F, Daly M, Arends MJ, Patel KJ. Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function. Nature. 2012;489(7417):571-575.
10. Howe K, Clark MD, Torroja CF, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496(7446):498-503.
11. Veldman MB, Lin S. Zebrafish as a Developmental Model Organism for Pediatric Research. Pediatr Res. 2008;64(5):470-476.
12. Teittinen KJ, Grönroos T, Parikka M, Rämet M, Lohi O. The zebrafish as a tool in leukemia research. Leuk Res. 2012;36(9): 1082-1088.
13. Davidson AJ, Zon LI. The ‘definitive’ (and ‘primitive’) guide to zebrafish hematopoiesis. Oncogene. 2004;23(43): 7233-7246.
14. de Jong JLO, Zon LI. Use of the Zebrafish System to Study Primitive and Definitive Hematopoiesis. Annu Rev Genet. 2005;39(1):481-501.
15. Palis J. Primitive and definitive erythro- poiesis in mammals. Front Physiol. 2014;5:3.
16. Carradice D, Lieschke GJ. Zebrafish in hematology: sushi or science? Blood.
2008;111(7):3331-3342.
17. Chen AT, Zon LI. Zebrafish blood stem cells.
J Cell Biochem. 2009;108(1):35-42.
18. Ellett F, Lieschke GJ. Zebrafish as a model for vertebrate hematopoiesis. Curr Opin
Pharmacol. 2010;10(5):563-570.
19. Bowman TV, Zon LI. Lessons from the
Niche for Generation and Expansion of Hematopoietic Stem Cells. Drug Discov Today Ther Strateg 2009;6(4):135-140.
20. Solnica-Krezel L, Schier AF, Driever W. Efficient Recovery of Enu-Induced Mutations from the Zebrafish Germline. Genetics. 1994;136(4):1401-1420.
21. Amsterdam A, Burgess S, Golling G, et al. A large-scale insertional mutagenesis screen in zebrafish. Genes Dev. 1999;13(20):2713- 2724.
22. Stainier DYR, Raz E, Lawson ND, et al. Guidelines for morpholino use in zebrafish. PLoS Genet. 2017;13(10):e1007000.
23. Robu ME, Larson JD, Nasevicius A, et al. p53 Activation by Knockdown Technologies. PLoS Genet. 2007;3(5):e78.
24. Kok FO, Shin M, Ni CW, et al. Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Dev Cell. 2015;32(1):97-108.
25. Rossi A, Kontarakis Z, Gerri C, et al. Genetic compensation induced by deleterious muta- tions but not gene knockdowns. Nature. 2015;524(7564):230-233.
26. Chiabrando D, Tolosano E. Diamond Blackfan Anemia at the crossroad between ribosome biogenesis and heme metabolism. Adv Hematol. 2010;2010:790632.
27. Giri N, Kang E, Tisdale JF, et al. Clinical and laboratory evidence for a trilineage haematopoietic defect in patients with refractory Diamond-Blackfan anaemia. Br J Haematol. 2000;108(1):167-175.
28. Landowski M, O'Donohue MF, Buros C, et al. Novel deletion of RPL15 identified by
array-comparative genomic hybridization in Diamond-Blackfan anemia. Hum Genet. 2013;132(11):1265-1274.
29. Da Costa L, Narla A, Mohandas N. An update on the pathogenesis and diagnosis of Diamond–Blackfan anemia. F1000Res. 2018;7.
30. Zhang Y, Ear J, Yang Z, Morimoto K, Zhang B, Lin S. Defects of protein production in erythroid cells revealed in a zebrafish Diamond–Blackfan anemia model for muta- tion in RPS19. Cell Death Dis. 2014;5(7):e1352.
proteins find their way. Cancer Cell.
2009;16(5):369-377.
45. Payne EM, Virgilio M, Narla A, et al. L-
Leucine improves the anemia and develop- mental defects associated with Diamond- Blackfan anemia and del(5q) MDS by acti- vating the mTOR pathway. Blood. 2012;120(11):2214-2224.
46. Pospisilova D, Cmejlova J, Hak J, Adam T, Cmejla R. Successful treatment of a Diamond-Blackfan anemia patient with amino acid leucine. Haematologica. 2007;92(5):e66-e67.
47. Ear J, Huang H, Wilson T, et al. RAP-011 improves erythropoiesis in zebrafish model of Diamond-Blackfan anemia through antagonizing lefty1. Blood. 2015;126(7):880-
31. Danilova N, Sakamoto KM, Lin S.
Ribosomal protein S19 deficiency in
zebrafish leads to developmental abnormal-
ities and defective erythropoiesis through
activation of p53 protein family. Blood. 890.
2008;112(13):5228-5237.
32. Uechi T, Nakajima Y, Chakraborty A,
Torihara H, Higa S, Kenmochi N. Deficiency of ribosomal protein S19 during early embryogenesis leads to reduction of ery- throcytes in a zebrafish model of Diamond- Blackfan anemia. Hum Mol Genet. 2008;17(20):3204-3211.
33. Danilova N, Bibikova E, Covey TM, et al. The role of the DNA damage response in zebrafish and cellular models of Diamond Blackfan anemia. Dis Model Mech. 2014;7(7):895-905.
34. Torihara H, Uechi T, Chakraborty A, Shinya M, Sakai N, Kenmochi N. Erythropoiesis failure due to RPS19 deficiency is independ- ent of an activated Tp53 response in a zebrafish model of Diamond-Blackfan anaemia. Br J Haematol. 2011;152(5):648- 654.
35. Chakraborty A, Uechi T, Higa S, Torihara H, Kenmochi N. Loss of Ribosomal Protein L11 Affects Zebrafish Embryonic Development through a p53-Dependent Apoptotic Response. PLoS One. 2009;4(1):e4152.
36. Amsterdam A, Nissen RM, Sun Z, Swindell EC, Farrington S, Hopkins N. Identification of 315 genes essential for early zebrafish development. Proc Natl Acad Sci USA. 2004;101(35):12792-12797.
37. Danilova N, Sakamoto KM, Lin S. Ribosomal protein L11 mutation in zebrafish leads to haematopoietic and meta- bolic defects. Br J Haematol. 2011;152(2): 217-228.
38. Danilova N, Gazda HT. Ribosomopathies: how a common root can cause a tree of pathologies. Dis Model Mech. 2015;8 (9):1013-1026.
48. Doulatov S, Vo LT, Macari ER, et al. Drug discovery for Diamond-Blackfan anemia using reprogrammed hematopoietic progen- itors. Sci Transl Med. 2017;9(376).
49. Du HY, Pumbo E, Ivanovich J, et al. TERC and TERT gene mutations in patients with bone marrow failure and the significance of telomere length measurements. Blood. 2008;113(2):309-316.
50. Zhang Y, Morimoto K, Danilova N, Zhang B, Lin S. Zebrafish Models for Dyskeratosis Congenita Reveal Critical Roles of p53 Activation Contributing to Hematopoietic Defects through RNA Processing. PLoS One. 2012;7(1):e30188.
51. Ruggero D, Shimamura A. Marrow failure: a window into ribosome biology. Blood. 2014;124(18):2784-2792.
52. Ballew BJ, Yeager M, Jacobs K, et al. Germline mutations of regulator of telomere elongation helicase 1, RTEL1, in Dyskeratosis congenita. Hum Genet. 2013;132(4):473-480.
53. Pereboom TC, van Weele LJ, Bondt A, MacInnes AW. A zebrafish model of dysker- atosis congenita reveals hematopoietic stem cell formation failure resulting from riboso- mal protein-mediated p53 stabilization. Blood. 2011;118(20):5458-5465.
54. Freed EF, Bleichert F, Dutca LM, Baserga SJ. When ribosomes go bad: diseases of ribo- some biogenesis. Mol Biosyst. 2010;6(3): 481-493.
55. Henriques CM, Carneiro MC, Tenente IM, Jacinto A, Ferreira MG. Telomerase Is Required for Zebrafish Lifespan. PLoS Genet. 2013;9(1):e1003214.
56. Carneiro MC, de Castro IP, Ferreira MG. Telomeres in aging and disease: lessons from zebrafish. Dis Model Mech. 2016;9(7):737-
39. Duan J, Ba Q, Wang Z, et al. Knockdown of
ribosomal protein S7 causes developmental 748.
abnormalities via p53 dependent and inde- pendent pathways in zebrafish. Int J Biochem Cell Biol. 2011;43(8):1218-1227.
40. Antunes AT, Goos YJ, Pereboom TC, et al. Ribosomal Protein Mutations Result in Constitutive p53 Protein Degradation through Impairment of the AKT Pathway. PLoS Genet. 2015;11(7):e1005326.
41. Taylor AM, Humphries JM, White RM, Murphey RD, Burns CE, Zon LI. Hematopoietic defects in rps29 mutant zebrafish depend upon p53 activation. Exp Hematol. 2012;40(3):228-237.e5.
42. Yadav GV, Chakraborty A, Uechi T, Kenmochi N. Ribosomal protein deficiency causes Tp53-independent erythropoiesis failure in zebrafish. Int J Biochem Cell Biol. 2014;49:1-7.
43. Amsterdam A, Sadler KC, Lai K, et al. Many Ribosomal Protein Genes Are Cancer Genes in Zebrafish. PLoS Biol. 2004;2(5):e139.
44. Zhang Y, Lu H. Signaling to p53: ribosomal
57. Anchelin M, Alcaraz-Perez F, Martinez CM, Bernabe-Garcia M, Mulero V, Cayuela ML. Premature aging in telomerase-deficient zebrafish. Dis Model Mech. 2013;6(5):1101- 1112.
58. Kishi S, Bayliss PE, Uchiyama J, et al. The Identification of Zebrafish Mutants Showing Alterations in Senescence- Associated Biomarkers. PLoS Genet. 2008;4(8):e1000152.
59. Rodríguez-Marí A, Postlethwait JH. The Role of Fanconi Anemia/BRCA Genes in Zebrafish Sex Determination. The Zebrafish: Disease Models and Chemical Screens: Elsevier BV; 2011:461-490.
60. Soulier J. Detection of somatic mosaicism and classification of Fanconi anemia patients by analysis of the FA/BRCA pathway. Blood. 2004;105(3):1329-1336.
61. Geiselhart A, Lier A, Walter D, Milsom MD. Disrupted Signaling through the Fanconi Anemia Pathway Leads to Dysfunctional
haematologica | 2019; 104(1)
23


































































































   31   32   33   34   35