Page 13 - 2019_01-Haematologica-web
P. 13

Editorials
Third, what are the MNX1 target genes that mediate its leukemogenic potential? In a previous study, the same group identified binding to and regulation of the prostaglandin E receptor 2 (PTGER2) by MNX1 over-
24
expressed in the human HL60 AML cell line. However,
critical targets might significantly differ in a context of fetal liver HSPC.
Finally, and most importantly, it needs to be shown
of HLXB9 by juxtaposition with MYB via formation of t(6;7)(q23;q36) in an AML-M4 cell line (GDM-1). Genes Chromosomes Cancer. 2005;42(2):170-178.
8. Ross AJ, Ruiz-Perez V, Wang Y, et al. A homeobox gene, HLXB9, is the major locus for dominantly inherited sacral agenesis. Nat Genet. 1998;20(4):358-361.
9. Harrison KA, Thaler J, Pfaff SL, Gu H, Kehrl JH. Pancreas dorsal lobe age- nesis and abnormal islets of Langerhans in Hlxb9-deficient mice. Nat Genet. 1999;23(1):71-75.
10. LiH,ArberS,JessellTM,EdlundH.Selectiveagenesisofthedorsalpan- creas in mice lacking homeobox gene Hlxb9. Nat Genet. 1999;23(1):67-
whether high expression of MNX1 is critical to maintain a 70.
transformed phenotype. Knockdown or genome editing experiments in primary human AML cells (e.g. expanded in immune deficient mice) or conditional expression in transgenic mouse models may show the way. Further exploration of the MNX1 interacting proteome could pro- vide some clues as how to develop strategies for targeted therapeutic intervention.
Funding
Our lab is supported by the Swiss Cancer League, the Swiss National Science Foundation, the Wilhelm Sander Foundation (Munich, Germany), the San Salvatore Foundation (Lugano, Switzerland), and the Novartis Research Foundation (Basel, Switzerland).
References
1. Beverloo HB, Panagopoulos I, Isaksson M, et al. Fusion of the homeobox gene HLXB9 and the ETV6 gene in infant acute myeloid leukemias with the t(7;12)(q36;p13). Cancer Res. 2001;61(14):5374-5377.
2. Tosi S, Harbott J, Teigler-Schlegel A, et al. t(7;12)(q36;p13), a new recur- rent translocation involving ETV6 in infant leukemia. Genes Chromosomes Cancer. 2000;29(4):325-332.
3. Slater RM, von Drunen E, Kroes WG, et al. t(7;12)(q36;p13) and t(7;12)(q32;p13)--translocations involving ETV6 in children 18 months of age or younger with myeloid disorders. Leukemia. 2001;15(6):915- 920.
4. von Bergh AR, van Drunen E, van Wering ER, et al. High incidence of t(7;12)(q36;p13) in infant AML but not in infant ALL, with a dismal out- come and ectopic expression of HLXB9. Genes Chromosomes Cancer. 2006;45(8):731-739.
5. Ballabio E, Cantarella CD, Federico C, et al. Ectopic expression of the HLXB9 gene is associated with an altered nuclear position in t(7;12) leukaemias. Leukemia. 2009;23(6):1179-1182.
6. Espersen ADL, Noren-Nystrom U, Abrahamsson J, et al. Acute myeloid leukemia (AML) with t(7;12)(q36;p13) is associated with infancy and tri- somy 19: Data from Nordic Society for Pediatric Hematology and Oncology (NOPHO-AML) and review of the literature. Genes Chromosomes Cancer. 2018;57(7):359-365.
7. Nagel S, Kaufmann M, Scherr M, Drexler HG, MacLeod RA. Activation
11. ThalerJ,HarrisonK,SharmaK,LettieriK,KehrlJ,PfaffSL.Activesup- pression of interneuron programs within developing motor neurons revealed by analysis of homeodomain factor HB9. Neuron. 1999;23(4):675-687.
12. FlanaganSE,DeFrancoE,LangoAllenH,etal.Analysisoftranscription factors key for mouse pancreatic development establishes NKX2-2 and MNX1 mutations as causes of neonatal diabetes in man. Cell Metab. 2014;19(1):146-154.
13. Desai SS, Modali SD, Parekh VI, Kebebew E, Agarwal SK. GSK-3beta protein phosphorylates and stabilizes HLXB9 protein in insulinoma cells to form a targetable mechanism of controlling insulinoma cell prolifera- tion. J Biol Chem. 2014;289(9):5386-5398.
14. Zhang L, Wang J, Wang Y, et al. MNX1 Is Oncogenically Upregulated in African-American Prostate Cancer. Cancer Res. 2016;76(21):6290- 6298.
15. IngenhagD,ReisterS,AuerF,etal.Thehomeoboxtranscriptionfac- tor HB9 induces senescence and blocks differentiation in hemato- poietic stem and progenitor cells. Haematologica 2019;104(1):35-46.
16. PrieurA,PeeperDS.Cellularsenescenceinvivo:abarriertotumorige- nesis. Curr Opin Cell Biol. 2008;20(2):150-155.
17. Viale A, De Franco F, Orleth A, et al. Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells. Nature. 2009;457(7225):51-56.
18. Wildenhain S, Ruckert C, Rottgers S, et al. Expression of cell-cell inter- acting genes distinguishes HLXB9/TEL from MLL-positive childhood acute myeloid leukemia. Leukemia. 2010;24(9):1657-1660.
19. Bolouri H, Farrar JE, Triche T Jr, et al. The molecular landscape of pedi- atric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat Med. 2018;24(1):103-112.
20. Johansson B, Billstrom R, Mauritzson N, Mitelman F. Trisomy 19 as the sole chromosomal anomaly in hematologic neoplasms. Cancer Genet Cytogenet. 1994;74(1):62-65.
21. Dastugue N, Lafage-Pochitaloff M, Pages MP, et al. Cytogenetic profile of childhood and adult megakaryoblastic leukemia (M7): a study of the Groupe Francais de Cytogenetique Hematologique (GFCH). Blood. 2002;100(2):618-626.
22. Dang J, Nance S, Ma J, et al. AMKL chimeric transcription factors are potent inducers of leukemia. Leukemia. 2017;31(10):2228-2234.
23. Lebert-Ghali CE, Neault M, Fournier M, et al. Generation of a novel mouse model recapitulating features of human acute megakaryoblastic leukemia. Exp Hematol. 2018;64:S79.
24. Wildenhain S, Ingenhag D, Ruckert C, et al. Homeobox protein HB9 binds to the prostaglandin E receptor 2 promoter and inhibits intracellu- lar cAMP mobilization in leukemic cells. J Biol Chem. 2012;287 (48):40703-40712.
New insights into the causes of thrombotic events in patients with myeloproliferative neoplasms raise the possibility of novel therapeutic approaches
Michal Bar-Natan and Ronald Hoffman
Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
E-mail: ronald.hoffman@mssm.edu doi:10.3324/haematol.2018.205989
The Philadelphia chromosome-negative myeloprolif- erative neoplasms (MPN) include polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (MF). This group of clonal hematological malignancies is associated with a protracted clinical course
frequently punctuated by thrombotic events. Such throm- botic events have been previously attributed to excessive numbers of functionally abnormal red cells, platelets and leukocytes. MPN patients are not only at a high risk of developing arterial and venous thromboses, but also throm-
haematologica | 2019; 104(1)
3


































































































   11   12   13   14   15