Page 82 - 2018_12-Haematologica-web
P. 82

P.L. Moura et al.
Jiandi Wan (Rochester Institute of Technology, New York, USA), for helpful discussions on the setup of an ex vivo circula- tion system and the Watson-Marlow Fluid Technology Group for permission to reproduce an image of their pump systems in Figure 3A.
Funding
This work was funded by the European Union (F.A. H2020- MSCA-ITN-2015, “RELEVANCE”, Grant agreement N. 675117), NHS Blood and Transplant (NHSBT) R&D grants
(WP15-04 and WP15-05) and a National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell Products at the University of Bristol in part- nership with NHSBT (NIHR-BTRU-2015-10032). We acknowledge the Wolfson Bioimaging Facility of the University of Bristol for use of their confocal systems, as well as the MRC for establishing the Facility and the BBSRC Alert 13 capital grant (BB/L014181/1) for funding the acquisition of the Leica SP8. The views expressed are those of the authors and not nec- essarily of the NHS, the NIHR or the Department of Health.
References
1. Bessman JD. Reticulocytes. In: Walker HK, Hall WD, Hurst JW, eds. Clinical Methods: The History, Physical, and Laboratory Examinations. Boston, 1990.
2. Gifford SC, Derganc J, Shevkoplyas SS, Yoshida T, Bitensky MW. A detailed study of time-dependent changes in human red blood cells: from reticulocyte maturation to erythrocyte senescence. Br J Haematol. 2006;135(3):395-404.
3. Giarratana MC, Rouard H, Dumont A, et al. Proof of principle for transfusion of in vitro-generated red blood cells. Blood. 2011;118(19):5071-5079.
4. Griffiths RE, Kupzig S, Cogan N, et al. Maturing reticulocytes internalize plasma membrane in glycophorin A-containing vesicles that fuse with autophagosomes before exocytosis. Blood. 2012;119(26): 6296-6306.
5. Chasis JA, Prenant M, Leung A, Mohandas N. Membrane assembly and remodeling during reticulocyte maturation. Blood. 1989;74(3):1112-1120.
6. Malleret B, Xu F, Mohandas N, et al. Significant biochemical, biophysical and metabolic diversity in circulating human cord blood reticulocytes. PLoS One. 2013;8(10):e76062.
7. Liu J, Guo X, Mohandas N, Chasis JA, An X. Membrane remodeling during reticulo- cyte maturation. Blood. 2010;115(10):2021- 2027.
8. Blanc L, Vidal M. Reticulocyte membrane remodeling: contribution of the exosome pathway. Curr Opin Hematol. 2010;17(3): 177-183.
9. Koury MJ, Koury ST, Kopsombut P, Bondurant MC. In vitro maturation of nas- cent reticulocytes to erythrocytes. Blood. 2005;105(5):2168-2174.
10. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987;262 (19):9412-9420.
11. Lee E, Choi HS, Hwang JH, Hoh JK, Cho YH, Baek EJ. The RNA in reticulocytes is not just debris: it is necessary for the final stages of erythrocyte formation. Blood Cells Mol Dis. 2014;53(1-2):1-10.
12. Blanc L, Liu J, Vidal M, Chasis JA, An X, Mohandas N. The water channel aquapor- in-1 partitions into exosomes during reticu- locyte maturation: implication for the regu- lation of cell volume. Blood. 2009;114(18): 3928-3934.
13. Stolz A, Ernst A, Dikic I. Cargo recognition and trafficking in selective autophagy. Nat Cell Biol. 2014;16(6):495-501.
14. Holm TM, Braun A, Trigatti BL, et al. Failure of red blood cell maturation in mice with defects in the high-density lipoprotein receptor SR-BI. Blood. 2002;99(5):1817- 1824.
15. Zhang J, Ney PA. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ. 2009;16(7):939-946.
16. King JS, Veltman DM, Insall RH. The induction of autophagy by mechanical stress. Autophagy. 2011;7(12):1490-1499.
17. Holroyde CP, Gardner FH. Acquisition of autophagic vacuoles by human erythro- cytes. Physiological role of the spleen. Blood. 1970;36(5):566-575.
18. Kupzig S, Parsons SF, Curnow E, Anstee DJ, Blair A. Superior survival of ex vivo cul- tured human reticulocytes following trans- fusion into mice. Haematologica. 2017;102(3):476-483.
19. Dobbe JG, Streekstra GJ, Hardeman MR, Ince C, Grimbergen CA. Measurement of the distribution of red blood cell deforma- bility using an automated rheoscope. Cytometry. 2002;50(6):313-325.
20. Prenni JE, Vidal M, Olver CS. Preliminary characterization of the murine membrane reticulocyte proteome. Blood Cells Mol Dis. 2012;49(2):74-82.
21. Chu TTT, Sinha A, Malleret B, et al. Quantitative mass spectrometry of human reticulocytes reveal proteome-wide modifi- cations during maturation. Br J Haematol. 2018;180(1):118-133.
22. Meyers NL, Brewer GJ, Tashian RE. Enzymatic synthesis of carbonic anhydras- es by human reticulocytes. Biochim Biophys Acta. 1969;195(1):176-185.
23. Srivastava A, Evans KJ, Sexton AE, Schofield L, Creek DJ. Metabolomics-based elucidation of active metabolic pathways in erythrocytes and HSC-derived reticulo- cytes. J Proteome Res. 2017;16(4):1492- 1505.
24. Darghouth D, Giarratana MC, Oliveira L, et al. Bio-engineered and native red blood cells from cord blood exhibit the same metabolomic profile. Haematologica. 2016;101(6):e220-222.
25. Manno S, Takakuwa Y, Mohandas N. Modulation of erythrocyte membrane mechanical function by protein 4.1 phos- phorylation. J Biol Chem. 2005;280(9): 7581-7587.
26. Gauthier E, Guo X, Mohandas N, An X. Phosphorylation-dependent perturbations of the 4.1R-associated multiprotein com- plex of the erythrocyte membrane.
Biochemistry. 2011;50(21):4561-4567.
27. Koshino I, Mohandas N, Takakuwa Y. Identification of a novel role for dematin in regulating red cell membrane function by modulating spectrin-actin interaction. J Biol
Chem. 2012;287(42):35244-35250.
28. Fairbanks G, Palek J, Dino JE, Liu PA. Protein kinases and membrane protein phosphorylation in normal and abnormal human erythrocytes: variation related to
mean cell age. Blood. 1983;61(5):850-857. 29. Sanborn KB, Mace EM, Rak GD, et al. Phosphorylation of the myosin IIA tail- piece regulates single myosin IIA molecule association with lytic granules to promote NK-cell cytotoxicity. Blood. 2011;118(22):
5862-5871.
30. Basu A, Harper S, Pesciotta EN, Speicher
KD, Chakrabarti A, Speicher DW. Proteome analysis of the triton-insoluble erythrocyte membrane skeleton. J Proteomics. 2015;128:298-305.
31. Hansen TE, Johansen T. Following autophagy step by step. BMC Biol. 2011;9:39.
32. Mizuno Y, Isotani E, Huang J, Ding H, Stull JT, Kamm KE. Myosin light chain kinase activation and calcium sensitization in smooth muscle in vivo. Am J Physiol Cell Physiol. 2008;295(2):C358-364.
33. Mankelow TJ, Griffiths RE, Trompeter S, et al. Autophagic vesicles on mature human reticulocytes explain phosphatidylserine- positive red cells in sickle cell disease. Blood. 2015;126(15):1831-1834.
34. Wan J, Fan R, Emery T, et al. In vitro microfluidic circulatory system for circulat- ing cancer cells. Protoc Exch. 2016;2016.
35. Chen Y, Chan HN, Michael SA, et al. A microfluidic circulatory system integrated with capillary-assisted pressure sensors. Lab Chip. 2017;17(4):653-662.
36. Kovacs M, Toth J, Hetenyi C, Malnasi- Csizmadia A, Sellers JR. Mechanism of blebbistatin inhibition of myosin II. J Biol Chem. 2004;279(34):35557-35563.
37. Smith AS, Nowak RB, Zhou S, et al. Myosin IIA interacts with the spectrin- actin membrane skeleton to control red blood cell membrane curvature and deformability. Proc Natl Acad Sci USA. 2018;115(19):E4377-E4385.
38. Gutzeit E, Scheel C, Dolereit T, Rust M. Contour based split and merge segmenta- tion and pre-classification of zooplankton in very large images. Proceedings of the 2014 9th International Conference on Computer Vision Theory and Applications (Visapp), Vol 1. 2014;417-424.
39. Wilson MC, Trakarnsanga K, Heesom KJ, et al. Comparison of the proteome of adult
2006
haematologica | 2018; 103(12)


































































































   80   81   82   83   84