Page 43 - 2018_12-Haematologica-web
P. 43

TP53 aberrations in CLL
61. Malkin D, Li FP, Strong LC, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neo- plasms. Science. 1990;250(4985):1233-1238.
62. Bieging KT, Mello SS, Attardi LD. Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer. 2014;14(5):359-370.
63. Pfister NT, Prives C. Transcriptional regula- tion by wild-type and cancer-related mutant forms of p53. Cold Spring Harbor Perspect Med. 2017;7(2).
64. Muller PA, Vousden KH. p53 mutations in cancer. Nat Cell Biol. 2013;15(1):2-8.
65. Soussi T, Wiman KG. TP53: an oncogene in disguise. Cell Death Differ. 2015;22(8):1239- 1249.
66. Zenz T, Vollmer D, Trbusek M, et al. TP53 mutation profile in chronic lymphocytic leukemia: evidence for a disease specific profile from a comprehensive analysis of 268 mutations. Leukemia. 2010;24(12):2072- 2079.
67. Rossi D, Cerri M, Deambrogi C, et al. The prognostic value of TP53 mutations in chronic lymphocytic leukemia is independ- ent of del17p13: implications for overall sur- vival and chemorefractoriness. Clin Cancer Res. 2009;15(3):995-1004.
68. Purroy N, Wu CJ. Coevolution of leukemia and host immune cells in chronic lympho- cytic leukemia. Cold Spring Harbor Perspect Med. 2017;7(4):a026740.
69. Rossi D, Rasi S, Spina V, et al. Integrated mutational and cytogenetic analysis identi- fies new prognostic subgroups in chronic lymphocytic leukemia. Blood. 2013;121(8): 1403-1412.
70. Ljungstrom V, Cortese D, Young E, et al. Whole-exome sequencing in relapsing chronic lymphocytic leukemia: clinical impact of recurrent RPS15 mutations. Blood. 2016;127(8):1007-1016.
71. Ghia P, Ljungström V, Tausch E, et al. Whole-exome sequencing revealed no recur- rent mutations within the PI3K pathway in relapsed chronic lymphocytic leukemia patients progressing under idelalisib treat- ment. Blood. 2016;128(22):1.
72. Amin NA, Seymour E, Saiya-Cork K, Parkin B, Shedden K, Malek SN. A quantitative analysis of subclonal and clonal gene muta- tions before and after therapy in chronic lymphocytic leukemia. Clin Cancer Res. 2016;22(17):4525-4535.
73. Baliakas P, Hadzidimitriou A, Sutton LA, et al. Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia. 2015;29(2):329-336.
74. Pospisilova S, Sutton LA, Malcikova J, et al. Innovation in the prognostication of chronic lymphocytic leukemia: how far beyond TP53 gene analysis can we go? Haematologica. 2016;101(3):263-265.
75. Kantorova B, Malcikova J, Smardova J, et al. TP53 mutation analysis in chronic lympho- cytic leukemia: comparison of different detection methods. Tumour Biol. 2015;36(5):3371-3380.
76. Chin EL, da Silva C, Hegde M. Assessment of clinical analytical sensitivity and specifici- ty of next-generation sequencing for detec- tion of simple and complex mutations. BMC Genet. 2013;14(1):6.
77. Minervini CF, Cumbo C, Orsini P, et al. TP53 gene mutation analysis in chronic lympho- cytic leukemia by nanopore MinION sequencing. Diagn Pathol. 2016;11(1):96.
78. Sutton LA, Ljungstrom V, Mansouri L, et al. Targeted next-generation sequencing in chronic lymphocytic leukemia: a high-
throughput yet tailored approach will facili- tate implementation in a clinical setting. Haematologica. 2015;100(3):370-376.
79. Domenech E, Gomez-Lopez G, Gzlez-Pena D, et al. New mutations in chronic lympho- cytic leukemia identified by target enrich- ment and deep sequencing. PLoS One. 2012;7(6):e38158.
80. Jeromin S, Weissmann S, Haferlach C, et al. SF3B1 mutations correlated to cytogenetics and mutations in NOTCH1, FBXW7, MYD88, XPO1 and TP53 in 1160 untreated CLL patients. Leukemia. 2014;28(1):108- 117.
81. Wang J, Morrissette J, Lieberman DB, Timlin C, Schuster SJ, Mato AR. Utilization of next generation sequencing identifies potentially actionable mutations in chronic lymphocyt- ic leukaemia. Br J Haematol. 2018;180(2): 299-301.
82. Hallek M, Cheson BD, Catovsky D, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111 (12):5446-5456.
83. Oscier D, Dearden C, Eren E, et al. Guidelines on the diagnosis, investigation and management of chronic lymphocytic leukaemia. Br J Haematol. 2012;159(5):541- 564.
84. Eichhorst B, Robak T, Montserrat E, et al. Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(Suppl 5):v78-84.
85. National Comprehensive Cancer Network. Chronic lymphocytic leukemia/small lym- phocytic leukemia, version 2. 21 Feb 2017 Available from: https://www.nccn.org/pro- fessionals/physician_gls/f_guidelines.asp
86. Dunnen JT, Dalgleish R, Maglott DR, et al. HGVS recommendations for the description of sequence variants: 2016 Update. Hum Mutat. 2016;37(6):564-569.
87. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recom- mendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-424.
88. Soussi T, Leroy B, Taschner PE. Recommendations for analyzing and report- ing TP53 gene variants in the high-through- put sequencing era. Hum Mutat. 2014;35 (6):766-778.
89. Tikkanen T, Leroy B, Fournier JL, Risques RA, Malcikova J, Soussi T. Seshat: A Web service for accurate annotation, validation, and analysis of TP53 variants generated by conventional and next-generation sequenc- ing. Hum Mutat. 2018;39(7):925-933.
90. Fischer K, Cramer P, Busch R, et al. Bendamustine combined with rituximab in patients with relapsed and/or refractory chronic lymphocytic leukemia: a multicen- ter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol. 2011;29(26):3559-3566.
91. Del Poeta G, Postorino M, Pupo L, et al. Venetoclax: Bcl-2 inhibition for the treat- ment of chronic lymphocytic leukemia. Drugs Today (Barc). 2016;52(4):249-260.
92. Roberts AW, Davids MS, Pagel JM, et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374(4):311-322.
93. Seymour JF, Ma S, Brander DM, et al.
Venetoclax plus rituximab in relapsed or refractory chronic lymphocytic leukaemia: a phase 1b study. Lancet Oncol. 2017;18(2):230-240.
94. Janssen-Cilag International NV. Imbruvica 140 mg hard capsules. Summary of Product Characteristics. Beerse, Belgium; 30 August 2017.
95. Byrd JC, Furman RR, Coutre SE, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369(1):32-42.
96. Gilead Sciences International Ltd. Zydelig 100 mg film-coated tablets. Summary of Product Characteristics. Cambridge, UK; 17 August 2017.
97. AbbVie Ltd. Venclyxto 10 mg film-coated tablets. Summary of Product Characteristics. Maidenhead, UK; 8 May 2017.
98. Anderson MA, Tam C, Lew TE, et al. Clinicopathological features and outcomes of progression of CLL on the BCL2 inhibitor venetoclax. Blood. 2017;129(25):3362-3370.
99. Brown JR, Hillmen P, O'Brien S, et al. Extended follow-up and impact of high-risk prognostic factors from the phase 3 RES- ONATE study in patients with previously treated CLL/SLL. Leukemia. 2018;32(1):83- 91.
100. Huber H, Edenhofer S, Estenfelder S, Stilgenbauer S. Profile of venetoclax and its potential in the context of treatment of relapsed or refractory chronic lymphocytic leukemia. Onco Targets Ther. 2017;10:645- 656.
101.Oppermann S, Ylanko J, Shi Y, et al. High- content screening identifies kinase inhibitors that overcome venetoclax resistance in acti- vated CLL cells. Blood. 2016;128(7):934-947.
102.Woyach JA, Furman RR, Liu TM, et al. Resistance mechanisms for the Bruton's tyrosine kinase inhibitor ibrutinib. N Engl J Med. 2014;370(24):2286-2294.
103.Burger JA, Landau DA, Taylor-Weiner A, et al. Clonal evolution in patients with chronic lymphocytic leukaemia developing resist- ance to BTK inhibition. Nat Commun. 2016;7:11589.
104. Woyach JA, Guinn D, Ruppert AS, et al. The development and expansion of resistant subclones precedes relapse during ibrutinib therapy in patients with CLL. Blood. 2016;128(22):55.
105. Woyach JA, Johnson AJ. Targeted therapies in CLL: mechanisms of resistance and strate- gies for management. Blood. 2015;126(4): 471-477.
106.Mato AR, Hill BT, Lamanna N, et al. Optimal sequencing of ibrutinib, idelalisib, and venetoclax in chronic lymphocytic leukemia: results from a multicenter study of 683 patients. Ann Oncol. 2017;28(5): 1050-1056.
107. Jones J, Choi MY, Mato AR, et al. Venetoclax (VEN) monotherapy for patients with chronic lymphocytic leukemia (CLL) who relapsed after or were refractory to ibrutinib or idelalisib. Blood. 2016;128(22):637.
108.Follows GA, Bloor A, Dearden C, et al. Interim statement from the BCSH CLL Guidelines Panel. 2015. Available from: http://www.b-s-h.org.uk/media/ 13488/interim-statement-cll-guidelines-ver- sion6.pdf
109. European Society for Medical Oncology. eUpdate – chronic lymphocytic leukaemia treatment recommendations. 2017. Available from: http://www.esmo.org/ Guidelines/Haematological-Malignancies/ Chronic-Lymphocytic-Leukaemia/eUpdate- Treatment-Recommendations
haematologica | 2018; 103(12)
1967


































































































   41   42   43   44   45