Page 42 - 2018_12-Haematologica-web
P. 42

E. Campo et al.
15. Dreger P, Döhner H, Ritgen M, et al. Allogeneic stem cell transplantation pro- vides durable disease control in poor-risk chronic lymphocytic leukemia: long-term clinical and MRD results of the GCLLSG CLL3X trial. Blood. 2010;116(14):2438-2447.
16. Pettitt AR, Jackson R, Carruthers S, et al. Alemtuzumab in combination with methyl- prednisolone is a highly effective induction regimen for patients with chronic lympho- cytic leukemia and deletion of TP53: final results of the National Cancer Research Institute CLL206 trial. J Clin Oncol. 2012;30(14):1647-1655.
17. Dreger P, Schnaiter A, Zenz T, et al. TP53, SF3B1, and NOTCH1 mutations and out- come of allotransplantation for chronic lym- phocytic leukemia: six-year follow-up of the GCLLSG CLL3X trial. Blood. 2013;121(16): 3284-3288.
18. Byrd JC, Brown JR, O'Brien S, et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014;371(3):213-223.
19. Furman RR, Sharman JP, Coutre SE, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014;370(11):997-1007.
20. Jones JA, Robak T, Brown JR, et al. Efficacy and safety of idelalisib in combination with ofatumumab for previously treated chronic lymphocytic leukaemia: an open-label, ran- domised phase 3 trial. Lancet Haematol. 2017;4(3):e114-e126.
21. O'Brien S, Jones JA, Coutre SE, et al. Ibrutinib for patients with relapsed or refrac- tory chronic lymphocytic leukaemia with 17p deletion (RESONATE-17): a phase 2, open-label, multicentre study. Lancet Oncol. 2016;17(10):1409-1418.
22. O'Brien SM, Lamanna N, Kipps TJ, et al. A phase 2 study of idelalisib plus rituximab in treatment-naive older patients with chronic lymphocytic leukemia. Blood. 2015;126(25): 2686-2694.
23. Sharman JP, Coutre SE, Furman RR, et al. Second interim analysis of a phase 3 study of idelalisib (ZYDELIG®) plus rituximab (R) for relapsed chronic lymphocytic leukemia (CLL): efficacy analysis in patient subpopu- lations with Del (17p) and other adverse prognostic factors. Blood. 2014;124(21):330.
24. Stilgenbauer S, Eichhorst B, Schetelig J, et al. Venetoclax in relapsed or refractory chronic lymphocytic leukaemia with 17p deletion: a multicentre, open-label, phase 2 study. Lancet Oncol. 2016;17(6):768-778.
25. Thornton P, Brown J, Hillmen P, et al. Efficacy of ibrutinib versus ofatumumab by cytogenetic and clinical subgroups in a phase 3 trial in patients with previously treated CLL/SLL. Hematol Oncol. 2015;31(S1):96-150.
26. Zelenetz AD, Barrientos JC, Brown JR, et al. Idelalisib or placebo in combination with bendamustine and rituximab in patients with relapsed or refractory chronic lympho- cytic leukaemia: interim results from a phase 3, randomised, double-blind, placebo-con- trolled trial. Lancet Oncol. 2017;18(3):297- 311.
27. Pospisilova S, Gonzalez D, Malcikova J, et al. ERIC recommendations on TP53 muta- tion analysis in chronic lymphocytic leukemia. Leukemia. 2012;26(7):1458-1461.
28. Lazarian G, Tausch E, Eclache V, et al. TP53 mutations are early events in chronic lym- phocytic leukemia disease progression and precede evolution to complex karyotypes. Int J Cancer. 2016;139(8):1759-1763.
29. Malcikova J, Pavlova S, Kozubik KS,
Pospisilova S. TP53 mutation analysis in clinical practice: lessons from chronic lym- phocytic leukemia. Hum Mutat. 2014;35(6):663-671.
30. Malcikova J, Smardova J, Rocnova L, et al. Monoallelic and biallelic inactivation of TP53 gene in chronic lymphocytic leukemia: selection, impact on survival, and response to DNA damage. Blood. 2009;114(26):5307- 5314.
31. Nadeu F, Delgado J, Royo C, et al. Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in chronic lymphocytic leukemia. Blood. 2016;127(17):2122-2130.
32. Baran-Marszak F, Vidal V, Hormi M, et al. A retrospective analysis of 450 TP53 muta- tions in a real life cohort of CLL from the French Innovative Leukemia Organization (FILO) group. Blood. 2017; 130:1722.
33. Leroy B, Ballinger ML, Baran-Marszak F, et al. Recommended guidelines for validation, quality control, and reporting of TP53 vari- ants in clinical practice. Cancer Res. 2017;77(6):1250-1260.
34. Hallek M, Cheson BD, Catovsky D, et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood. 2018;131(25):2745-2760.
35. Malcikova J, Tausch E, Rossi D, et al. ERIC recommendations on TP53 mutation analy- sis in chronic lymphocytic leukemia – UPDATE on interpretation and methodolo- gies including next-generation sequencing. Leukemia. 2018;32(5):1070-1080.
36. Lazarian G, Guieze R, Wu CJ. Clinical impli- cations of novel genomic discoveries in chronic lymphocytic leukemia. J Clin Oncol. 2017;35(9):984-993.
37. Delgado J, Salaverria I, Baumann T, et al. Genomic complexity and IGHV mutational status are key predictors of outcome of chronic lymphocytic leukemia patients with TP53 disruption. Haematologica. 2014;99 (11):e231-234.
38. Rigolin GM, Saccenti E, Bassi C, et al. Extensive next-generation sequencing analy- sis in chronic lymphocytic leukemia at diag- nosis: clinical and biological correlations. J Hematol Oncol. 2016;9(1):88.
39. Haferlach C, Dicker F, Schnittger S, Kern W, Haferlach T. Comprehensive genetic charac- terization of CLL: a study on 506 cases analysed with chromosome banding analy- sis, interphase FISH, IgV(H) status and immunophenotyping. Leukemia. 2007;21 (12):2442-2451.
40. Dicker F, Herholz H, Schnittger S, et al. The detection of TP53 mutations in chronic lym- phocytic leukemia independently predicts rapid disease progression and is highly cor- related with a complex aberrant karyotype. Leukemia. 2009;23(1):117-124.
41. Brejcha M, Stoklasova M, Brychtova Y, et al. Clonal evolution in chronic lymphocytic leukemia detected by fluorescence in situ hybridization and conventional cytogenetics after stimulation with CpG oligonucleotides and interleukin-2: a prospective analysis. Leuk Res. 2014;38(2):170-175.
42. Herling CD, Klaumunzer M, Rocha CK, et al. Complex karyotypes and KRAS and POT1 mutations impact outcome in CLL after chlorambucil-based chemotherapy or chemoimmunotherapy. Blood. 2016;128(3): 395-404.
43. Ouillette P, Collins R, Shakhan S, et al. Acquired genomic copy number aberrations and survival in chronic lymphocytic leukemia. Blood. 2011;118(11):3051-3061.
44. Knight SJ, Yau C, Clifford R, et al. Quantification of subclonal distributions of recurrent genomic aberrations in paired pre- treatment and relapse samples from patients with B-cell chronic lymphocytic leukemia. Leukemia. 2012;26(7):1564-1575.
45. Baliakas P, Jeromin S, Iskas M, et al. Cytogenetic complexity in chronic lympho- cytic leukemia: definitions, associations with other biomarkers and clinical impact; a retrospective study on behalf of ERIC. Haematologica. 2017;102(Suppl 2):170.
46. Stephens PJ, Greenman CD, Fu B, et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell. 2011;144(1):27-40.
47. Bassaganyas L, Bea S, Escaramis G, et al. Sporadic and reversible chromothripsis in chronic lymphocytic leukemia revealed by longitudinal genomic analysis. Leukemia. 2013;27(12):2376-2379.
48. Salaverria I, Martin-Garcia D, Lopez C, et al. Detection of chromothripsis-like patterns with a custom array platform for chronic lymphocytic leukemia. Genes Chromosom Cancer. 2015;54(11):668-680.
49. Parker H, Rose-Zerilli MJ, Larrayoz M, et al. Genomic disruption of the histone methyl- transferase SETD2 in chronic lymphocytic leukaemia. Leukemia. 2016;30(11):2179- 2186.
50. Landau DA, Carter SL, Stojanov P, et al. Evolution and impact of subclonal muta- tions in chronic lymphocytic leukemia. Cell. 2013;152(4):714-726.
51. Malcikova J, Stano-Kozubik K, Tichy B, et al. Detailed analysis of therapy-driven clonal evolution of TP53 mutations in chronic lym- phocytic leukemia. Leukemia. 2015;29(4): 877-885.
52. Messina M, Del Giudice I, Khiabanian H, et al. Genetic lesions associated with chronic lymphocytic leukemia chemo-refractori- ness. Blood. 2014;123(15):2378-2388.
53. Quesada V, Ramsay AJ, Rodriguez D, Puente XS, Campo E, Lopez-Otin C. The genomic landscape of chronic lymphocytic leukemia: clinical implications. BMC Med. 2013;11(1):124.
54. Lode L, Cymbalista F, Soussi T. Genetic pro- filing of CLL: a 'TP53 addict' perspective. Cell Death Dis. 2016;14(7):e2042.
55. Clifford R, Louis T, Robbe P, et al. SAMHD1 is mutated recurrently in chronic lympho- cytic leukemia and is involved in response to DNA damage. Blood. 2014;123(7):1021- 1031.
56. Guieze R, Robbe P, Clifford R, et al. Presence of multiple recurrent mutations confers poor trial outcome of relapsed/refractory CLL. Blood. 2015;126(18):2110-2117.
57. Stamatopoulos K, Agathangelidis A, Rosenquist R, Ghia P. Antigen receptor stereotypy in chronic lymphocytic leukemia. Leukemia. 2017;31(2):282-291.
58. Hamblin TJ, Davis ZA, Oscier DG. Determination of how many immunoglobu- lin variable region heavy chain mutations are allowable in unmutated chronic lympho- cytic leukaemia – long-term follow up of patients with different percentages of muta- tions. Br J Haematol. 2008;140(3):320-323.
59. Stamatopoulos B, Timbs A, Bruce D, et al. Targeted deep sequencing reveals clinically relevant subclonal IgHV rearrangements in chronic lymphocytic leukemia. Leukemia. 2017;31(4):837-845.
60. Leroy B, Anderson M, Soussi T. TP53 muta- tions in human cancer: database reassess- ment and prospects for the next decade. Hum Mutat. 2014;35(6):672-688.
1966
haematologica | 2018; 103(12)


































































































   40   41   42   43   44