Page 31 - 2018_12-Haematologica-web
P. 31

Role of osteogenic niche in AML progression
84. Benito J, Ramirez M, Millward NZ, et al. Hypoxia-activated prodrug TH-302 targets hypoxic bone marrow niches in pre-clinical leukemia models. Clin Cancer Res. 2016;22(7):1687-1698.
85. Rouault-Pierre K, Lopez-Onieva L, Foster K, et al. HIF-2alpha protects human hematopoietic stem/progenitors and acute myeloid leukemic cells from apoptosis induced by endoplasmic reticulum stress. Cell Stem Cell. 2013;13(5):549-563.
86. Fiegl M, Samudio I, Clise-Dwyer K, et al. CXCR4 expression and biologic activity in acute myeloid leukemia are dependent on oxygen partial pressure. Blood. 2009;113(7): 1504-1512.
87. Zhang H, Li H, Xi HS, Li S. HIF1 is required for survival maintenance of chronic myeloid leukemia stem cells. Blood. 2012;119(11): 2595-2607.
88. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med. 2006;12(10):1167-1174.
89. Jiang E, Pham J, Kim H-N, et al. VLA4 Blockade In Acute Myeloid Leukemia. Blood. 2013;122(21):3944.
90. Layani-Bazar A, Skornick I, Berrebi A, et al. Redox Modulation of Adjacent Thiols in VLA-4 by AS101 Converts Myeloid Leukemia Cells from a Drug-Resistant to Drug-Sensitive State. Cancer Res J. 2014;74(11):3092-3103.
91. Chen Y, Jacamo R, Shi YX, et al. Human extramedullary bone marrow in mice: a novel in vivo model of genetically controlled hematopoietic microenvironment. Blood. 2012;119(21):4971-4980.
92. Jacamo R, Chen Y, Wang Z, et al. Reciprocal leukemia-stroma VCAM-1/VLA-4-depen- dent activation of NF-kappaB mediates chemoresistance. Blood. 2014;123(17):2691- 2702.
93. Abdel-Wahab O, Levine RL. Mutations in epigenetic modifiers in the pathogenesis and therapy of acute myeloid leukemia. Blood. 2013;121(18):3563-3572.
94. Sexauer A, Perl A, Yang X, et al. Terminal myeloid differentiation in vivo is induced by FLT3 inhibition in FLT3/ITD AML. Blood. 2012;120(20):4205-4214.
95. Boddu P, Borthakur G. Therapeutic targeting of isocitrate dehydrogenase mutant AML. Expert Opin Investig Drugs. 2017;26(5):525- 530.
96. Bonig H, Wundes A, Chang K-H, Lucas S, Papayannopoulou T. Increased numbers of circulating hematopoietic stem/progenitor cells are chronically maintained in patients treated with the CD49d blocking antibody natalizumab. Blood. 2008;111(7):3439-3441.
97. Becker PS, Foran JM, Altman JK, et al. Targeting the CXCR4 Pathway: Safety, Tolerability and Clinical Activity of Ulocuplumab (BMS-936564), an Anti- CXCR4 Antibody, in Relapsed/Refractory Acute Myeloid Leukemia. Blood. 2014;124 (21):386.
98. Uy GL, Rettig MP, Stone RM, et al. A phase 1/2 study of chemosensitization with plerix- afor plus G-CSF in relapsed or refractory acute myeloid leukemia. Blood Cancer J. 2017;7(3):e542.
99. Lobry C, Ntziachristos P, Ndiaye-Lobry D, et al. Notch pathway activation targets AML-initiating cell homeostasis and differ- entiation. J Exp Med. 2013;210(2):301-319.
100. Klinakis A, Lobry C, Abdel-Wahab O, et al. A novel tumor suppressor function for the Notch pathway in myeloid leukemia. Nature. 2011;473(7346):230-233.
101. Arranz L, Sánchez-Aguilera A, Martín-Pérez D, et al. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature. 2014;512(7512):78-81.
102. Tabe Y, Yamamoto S, Saitoh K, et al. Bone marrow adipocytes facilitate fatty acid oxi- dation activating AMPK and a transcription- al network supporting survival of acute monocytic leukemia cells. Cancer Res. 2017;77(6):1453-1464.
103.Shafat MS, Oellerich T, Mohr S, et al. Leukemic blasts program bone marrow adipocytes to generate a pro-tumoral
104.
microenvironment. Blood. 2017;129(10): 1320-1332.
Battula VL, Chen Y, da Graca Cabreira M, et al. Connective tissue growth factor regulates adipocyte differentiation of mesenchymal stromal cells and facilitates leukemia bone marrow engraftment. Blood. 2013;122(3): 357-366.
105.Lu W, Weng W, Zhu Q, et al. Small bone marrow adipocytes predict poor prognosis in acute myeloid leukemia. Haematologica. 2018;103(1):e21-e24.
106.Behan JW, Yun JP, Proektor MP, et al. Adipocytes Impair Leukemia Treatment in Mice. Cancer Res J. 2009;69(19):7867-7874.
107.Sheng X, Tucci J, Parmentier J-H, et al. Adipocytes cause leukemia cell resistance to daunorubicin via oxidative stress response. Oncotarget. 2016;7(45):73147-73159.
108. Griessinger E, Moschoi R, Biondani G, Peyron JF. Mitochondrial Transfer in the Leukemia Microenvironment. Trends Cancer. 2017;3(12):828-839.
109.Moschoi R, Imbert V, Nebout M, et al. Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood. 2016;128(2):253-264.
110.Marlein CR, Zaitseva L, Piddock RE, et al. NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts. Blood. 2017;130(14):1649-1660.
111. Steensma DP, Ebert BL. Clonal Hematopoiesis after Induction Chemo- therapy for Acute Myeloid Leukemia. N Engl J Med. 2018;378(13):1244-1245.
112.Liersch R, Gerss J, Schliemann C, et al. Osteopontin is a prognostic factor for sur- vival of acute myeloid leukemia patients. Blood. 2012;119(22):5215-5220.
113. Tohda S, Nara N. Expression of Notchl and Jaggedl Proteins in Acute Myeloid Leukemia Cells. Leuk Lymphoma. 2001;42(3):467-472.
114.Dong M, Blobe GC. Role of transforming growth factor- in hematologic malignan- cies. Blood. 2006;107(12):4589-4596.
haematologica | 2018; 103(12)
1955


































































































   29   30   31   32   33