Page 30 - 2018_12-Haematologica-web
P. 30

P.M. Le et al.
Leukemia. N Engl J Med. 2012;366(12):1090-
1098.
33. Genomic and Epigenomic Landscapes of
Adult De Novo Acute Myeloid Leukemia. N
Engl J Med. 2013;368(22):2059-2074.
34. Shlush LI, Zandi S, Mitchell A, et al. Identification of pre-leukemic hematopoiet- ic stem cells in acute leukemia. Nature.
2014;506(7488):328-333.
35. Raaijmakers MH, Mukherjee S, Guo S, et al.
Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature. 2010;464(7290):852-857.
36. Kode A, Manavalan JS, Mosialou I, et al. Leukaemogenesis induced by an activating beta-catenin mutation in osteoblasts. Nature. 2014;506(7487):240-244.
37. Tothova Z, Gilliland DG. FoxO Transcription Factors and Stem Cell Homeostasis: Insights from the Hematopoietic System. Cell Stem Cell. 2007;1(2):140-152.
38. Kode A, Mosialou I, Manavalan SJ, et al. FoxO1-dependent induction of acute myeloid leukemia by osteoblasts in mice. Leukemia. 2016;30(1):1-13.
39. Dong L, Yu WM, Zheng H, et al. Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenviron- ment. Nature. 2016;539(7628):304-308.
40. Wiseman DH. Donor Cell Leukemia: A Review. Biol of Blood and Marrow Transplantation. 2011;17(6):771-789.
41. Wang Y, Krivtsov AV, Sinha AU, et al. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science. 2010;327(5973):1650-1653.
42. Lane SW, Wang YJ, Lo Celso C, et al. Differential niche and Wnt requirements during acute myeloid leukemia progression. Blood. 2011;118(10):2849-2856.
43. Soenen-Cornu V, Tourino C, Bonnet M-L, et al. Mesenchymal cells generated from patients with myelodysplastic syndromes are devoid of chromosomal clonal markers and support short- and long-term hematopoiesis in vitro. Oncogene. 2005;24 (15):2441-2448.
44. Huang JC, Basu SK, Zhao X, et al. Mesenchymal stromal cells derived from acute myeloid leukemia bone marrow exhibit aberrant cytogenetics and cytokine elaboration. Blood Cancer J. 2015;5:e302.
45. Blau O, Baldus CD, Hofmann WK, et al. Mesenchymal stromal cells of myelodys- plastic syndrome and acute myeloid leukemia patients have distinct genetic abnormalities compared with leukemic blasts. Blood. 2011;118(20):5583-5592.
46. Kornblau SM, Ruvolo PP, Wang RY, et al. Distinct protein signatures of acute myeloid leukemia bone marrow-derived stromal cells are prognostic for patient survival. Haematologica. 2018;103(5):810-821.
47. Mukherjee A, Rotwein P. Insulin-Like Growth Factor-Binding Protein-5 Inhibits Osteoblast Differentiation and Skeletal Growth by Blocking Insulin-Like Growth Factor Actions. Mol Endocrinol. 2008;22 (5):1238-1250.
48. Jacamo R, Davis RE, Ling X, et al. Tumor Trp53 status and genotype affect the bone marrow microenvironment in acute myeloid leukemia. Oncotarget. 2017;8(48): 83354-83369.
49. Hanoun M, Zhang D, Mizoguchi T, et al. Acute myelogenous leukemia-induced sym- pathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem Cell. 2014;15(3):365-375.
50. Battula VL, Le PM, Sun JC, et al. AML- induced osteogenic differentiation in mes-
enchymal stromal cells supports leukemia
growth. JCI Insight. 2017;2(13).
51. Boyd AL, Reid JC, Salci KR, et al. Acute
myeloid leukaemia disrupts endogenous myelo-erythropoiesis by compromising the adipocyte bone marrow niche. Nat Cell Biol. 2017;19(11):1336-1347.
52. Sala-Torra O, Gundacker HM, Stirewalt DL, et al. Connective tissue growth factor (CTGF) expression and outcome in adult patients with acute lymphoblastic leukemia. Blood. 2007;109(7):3080-3083.
53. Crispino JD, Le Beau MM. BMP meets AML: induction of BMP signaling by a novel fusion gene promotes pediatric acute leukemia. Cancer Cell. 2012;22(5):567-568.
54. Raymond A, Liu B, Liang H, et al. A role for BMP-induced homeobox gene MIXL1 in acute myelogenous leukemia and identifica- tion of type I BMP receptor as a potential tar- get for therapy. Oncotarget. 2014;5(24): 12675-12693.
55. Sterner RM, Kremer KN, Dudakovic A, et al. Tissue-Nonspecific Alkaline Phosphatase Is Required for MC3T3 Osteoblast–Mediated Protection of Acute Myeloid Leukemia Cells from Apoptosis. J Immunol. 2018;201(3): 1086-1096.
56. Frisch BJ, Ashton JM, Xing L, et al. Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia. Blood. 2012;119(2):540-550.
57. Baba T, Mukaida N. Role of macrophage inflammatory protein (MIP)-1 /CCL3 in leukemogenesis. Mol Cell Oncol. 2014;1(1): e29899.
58. Lane SW. Bad to the bone. Blood. 2012;119(2):323-325.
59. Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol. 2011;11(11):762-774.
60. Wu JY, Purton LE, Rodda SJ, et al. Osteoblastic regulation of B lymphopoiesis is mediated by G(s) -dependent signaling pathways. Proc Natl Acad Sci USA. 2008;105(44):16976-16981.
61. Rankin EB, Wu C, Khatri R, et al. The HIF signaling pathway in osteoblasts directly modulates erythropoiesis through the pro- duction of EPO. Cell. 2012;149(1):63-74.
62. Ding L, Morrison SJ. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature. 2013;495(7440):231-235.
63. Kumar B, Garcia M, Weng L, et al. Acute myeloid leukemia transforms the bone mar- row niche into a leukemia-permissive microenvironment through exosome secre- tion. Leukemia. 2017;32(3):575-587.
64. Geyh S, Rodriguez-Paredes M, Jager P, et al. Functional inhibition of mesenchymal stro- mal cells in acute myeloid leukemia. Leukemia. 2016;30(3):683-691.
65. Krevvata M, Silva BC, Manavalan JS, et al. Inhibition of leukemia cell engraftment and disease progression in mice by osteoblasts. Blood. 2014;124(18):2834-2846.
66. Duarte D, Hawkins ED, Akinduro O, et al. Inhibition of Endosteal Vascular Niche Remodeling Rescues Hematopoietic Stem Cell Loss in AML. Cell Stem Cell. 2017;22 (1):64-77.e6.
67. Gong JN, Yu J, Lin HS, et al. The role, mech- anism and potentially therapeutic applica- tion of microRNA-29 family in acute myeloid leukemia. Cell Death Differ. 2014;21(1):100-112.
68. Kapinas K, Kessler C, Ricks T, Gronowicz G, Delany AM. miR-29 Modulates Wnt Signaling in Human Osteoblasts through a Positive Feedback Loop. J Biol Chem. 2010;285(33):25221-25231.
69. Arranz L, Arriero MdM, Villatoro A. Interleukin-1β as emerging therapeu- tic target in hematological malignancies and potentially in their complications. Blood Rev. 2017;31(5):306-317.
70. Mao Cy, Wang Yg, Zhang X, et al. Double- edged-sword effect of IL-1 on the osteogen- esis of periodontal ligament stem cells via crosstalk between the NF- B, MAPK and BMP/Smad signaling pathways. Cell Death Dis. 2016;7(7):e2296.
71. Schepers K, Pietras EM, Reynaud D, et al. Myeloproliferative Neoplasia Remodels the Endosteal Bone Marrow Niche into a Self- Reinforcing Leukemic Niche. Cell Stem Cell. 2013;13(3):285-299.
72. Voermans C, van Heese WP, de Jong I, Gerritsen WR, van Der Schoot CE. Migratory behavior of leukemic cells from acute myeloid leukemia patients. Leukemia. 2002;16(4):650-657.
73. Sison EAR, McIntyre E, Magoon D, Brown P. Dynamic chemotherapy-induced upregu- lation of surface CXCR4 expression as a mechanism of chemotherapy resistance in pediatric acute myeloid leukemia. Mol Cancer Res. 2013;11(9):1004-1016.
74. Konoplev S, Rassidakis GZ, Estey E, et al. Overexpression of CXCR4 predicts adverse overall and event-free survival in patients with unmutated FLT3 acute myeloid leukemia with normal karyotype. Cancer. 2007;109(6):1152-1156.
75. Spoo AC, Lubbert M, Wierda WG, Burger JA. CXCR4 is a prognostic marker in acute myelogenous leukemia. Blood. 2007;109(2): 786-791.
76. Zeng Z, Shi YX, Samudio IJ, et al. Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood. 2009;113(24):6215-6224.
77. Nervi B, Ramirez P, Rettig MP, et al. Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood. 2009;113(24):6206-6214.
78. Kuhne MR, Mulvey T, Belanger B, et al. BMS-936564/MDX-1338: A Fully Human Anti-CXCR4 Antibody Induces Apoptosis <em>In Vitro</em> and Shows Antitumor Activity In Vivo in Hematologic Malignancies. Clin Cancer Res. 2013;19(2): 357-366.
79. Cho B-S, Zeng Z, Mu H, et al. Antileukemia activity of the novel peptidic CXCR4 antag- onist LY2510924 as monotherapy and in combination with chemotherapy. Blood. 2015;126(2):222-232.
80. Kremer KN, Peterson KL, Schneider PA, et al. CXCR4 Chemokine Receptor Signaling Induces Apoptosis in Acute Myeloid Leukemia Cells via Regulation of the Bcl-2 Family Members Bcl-XL, Noxa, and Bak. J Biol Chem. 2013;288(32):22899-22914.
81. Zhang Y, Patel S, Abdelouahab H, et al. CXCR4 inhibitors selectively eliminate CXCR4-expressing human acute myeloid leukemia cells in NOG mouse model. Cell Death Dis. 2012;3(10):e396.
82. Borthakur G, Ofran Y, Nagler A, et al. The Peptidic CXCR4 Antagonist, BL-8040, Significantly Reduces Bone Marrow Immature Leukemia Progenitors By Inducing Differentiation, Apoptosis and Mobilization: Results of the Dose Escalation Clinical Trial in Acute Myeloid Leukemia. Blood. 2015;126(23):2546.
83. Chen Y, Jacamo R, Konopleva M, et al. CXCR4 downregulation of let-7a drives chemoresistance in acute myeloid leukemia. J Clin Invest. 2013;123(6):2395-2407.
1954
haematologica | 2018; 103(12)


































































































   28   29   30   31   32