Page 65 - 2018_11-Haematologica-web
P. 65

Ferroportin structure and function
without pathogenic mutations in the hemochromatosis gene. N Engl J Med. 1999;341(10):725-732.
10. McDonald CJ, Wallace DF, Ostini L, Bell SJ, Demediuk B, Subramaniam VN. G80S- linked ferroportin disease: classical ferro- portin disease in an Asian family and reclas- sification of the mutant as iron transport defective. J Hepatol. 2011;54(3):538-544.
11. Mayr R, Janecke AR, Schranz M, et al. Ferroportin disease: a systematic meta- analysis of clinical and molecular findings. J Hepatol. 2010;53(5):941-949.
12. MacArthur DG, Manolio TA, Dimmock DP, et al. Guidelines for investigating causality of sequence variants in human disease. Nature. 2014;508(7497):469-476.
13. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recom- mendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-424.
14. Callebaut I, Joubrel R, Pissard S, et al. Comprehensive functional annotation of 18 missense mutations found in suspected hemochromatosis type 4 patients. Hum Mol Genet. 2014;23(17):4479-4490.
15. Adams PC, Barton JC. A diagnostic approach to hyperferritinemia with a non- elevated transferrin saturation. J Hepatol. 2011;55(2):453-458.
16. Lefebvre T, Dessendier N, Houamel D, et al. LC-MS/MS method for hepcidin-25 meas- urement in human and mouse serum: clini- cal and research implications in iron disor- ders. Clin Chem Lab Med. 2015; 53(10): 1557-1567.
17. Le Gac G, Ka C, Joubrel R, et al. Structure- function analysis of the human ferroportin iron exporter (SLC40A1): effect of hemochromatosis type 4 disease mutations and identification of critical residues. Hum Mutat. 2013;34(10):1371-1380.
18. Martí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, Sali A. Comparative pro- tein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct. 2000;29:291-325.
19. Taniguchi R, Kato HE, Font J, et al. Outward- and inward-facing structures of a putative bacterial transition-metal transporter with homology to ferroportin. Nat Commun. 2015;6:8545.
20. Gandon Y, Olivié D, Guyader D, et al. Non- invasive assessment of hepatic iron stores by MRI. Lancet. 2004;363(9406):357-362.
21. Schimanski LM, Drakesmith H, Merryweather-Clarke AT, et al. In vitro func- tional analysis of human ferroportin (FPN) and hemochromatosis-associated FPN muta- tions. Blood. 2005;105(10):4096-4102.
2011;55(3):730–731; author reply 731–732. 28. Galicia-Poblet G, Cid-París E, López-Andrés N, et al. Pediatric ferroportin disease. J Pediatr
Gastroenterol Nutr. 2016; 63(6):e205-e207. 29. Le Lan C, Mosser A, Ropert M, et al. Sex and acquired cofactors determine pheno- types of ferroportin disease. 2011;140(4):
1199-1207.e2.
30. Papanikolaou G, Tzilianos M, Christakis JI, et
al. Hepcidin in iron overload disorders. Blood.
2005;105(10):4103-4105.
31. Zoller H, McFarlane I, Theurl I, et al. Primary
iron overload with inappropriate hepcidin expression in V162del ferroportin disease. Hepatology. 2005;42(2):466-472.
32. Girelli D, De Domenico I, Bozzini C, et al. Clinical, pathological, and molecular corre- lates in ferroportin disease: a study of two novel mutations. J Hepatol. 2008;49(4):664-
22. Drakesmith H, Schimanski LM, Ormerod E,
et al. Resistance to hepcidin is conferred by 671.
hemochromatosis-associated mutations of
ferroportin. Blood. 2005;106(3):1092-1097. 23. Fernandes A, Preza GC, Phung Y, et al. The molecular basis of hepcidin-resistant heredi- tary hemochromatosis. Blood. 2009; 114(2):
437-443.
24. Callebaut I, Labesse G, Durand P, et al.
Deciphering protein sequence information through hydrophobic cluster analysis (HCA): current status and perspectives. Cell Mol Life Sci. 1997;53(8):621-645.
25. Cunat S, Giansily-Blaizot M, Bismuth M, et al. Global sequencing approach for character- izing the molecular background of hereditary iron disorders. Clin Chem. 2007; 53(12):2060- 2069.
26. Speletas M, Kioumi A, Loules G, et al. Analysis of SLC40A1 gene at the mRNA level reveals rapidly the causative mutations in patients with hereditary hemochromatosis type IV. Blood Cells Mol Dis. 2008;40(3):353- 359.
27. Speletas M, Onoufriadis E, Kioumi A, Germenis AE. SLC40A1-R178G mutation and ferroportin disease. J Hepatol.
33. De Domenico I, McVey Ward D, Nemeth E, et al. Molecular and clinical correlates in iron overload associated with mutations in ferro- portin. Haematologica. 2006; 91(8):1092- 1095.
34. Law CJ, Maloney PC, Wang D-N. Ins and outs of major facilitator superfamily antiporters. Annu Rev Microbiol. 2008; 62:289-305.
35. Quistgaard EM, Löw C, Guettou F, Nordlund P. Understanding transport by the major facilitator superfamily (MFS): struc- tures pave the way. Nat Rev Mol Cell Biol. 2016;17(2):123-132.
36. Yan N. Structural biology of the major facil- itator superfamily transporters. Annu Rev Biophys. 2015;44:257-283.
37. Bonaccorsi di Patti MC, Polticelli F, Cece G, et al. A structural model of human ferro- portin and of its iron binding site. FEBS J 2014;281(12):2851-2860.
38. Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605-1612.
haematologica | 2018; 103(11)
1805


































































































   63   64   65   66   67