Page 112 - 2018_10-Haematologica-web
P. 112

R. Jimenez-P. et al.
8. Hecht JL, Aster JC. Molecular biology of
Burkitt's lymphoma. J Clin Oncol. 2000;
18(21):3707-3721.
9. Boxer LM, Dang CV. Translocations involv-
ing c-myc and c-myc function. Oncogene.
2001;20(40):5595-5610.
10. Cole MD, McMahon SB. The Myc onco-
protein: a critical evaluation of transactiva- tion and target gene regulation. Oncogene. 1999;18(19):2916-2924.
11. Dang CV. MYC on the path to cancer. Cell. 2012;149(1):22-35.
12. Grandori C, Cowley SM, James LP, Eisenman RN. The Myc/Max/Mad net- work and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol. 2000; 16:653-699.
13. Nesbit CE, Tersak JM, Prochownik EV. MYC oncogenes and human neoplastic dis- ease. Oncogene. 1999;18(19):3004-3016.
14. Pelengaris S, Khan M, Evan G. c-MYC: more than just a matter of life and death. Nat Rev Cancer. 2002;2(10):764-776.
15. Chung HJ, Levens D. c-myc expression: keep the noise down! Mol Cells. 2005;20(2):157-166.
16. Adams JM, Harris AW, Pinkert CA, et al. The c-myc oncogene driven by immunoglobulin enhancers induces lym- phoid malignancy in transgenic mice. Nature. 1985;318(6046):533-538.
17. Felsher DW, Zetterberg A, Zhu J, Tlsty T, Bishop JM. Overexpression of MYC causes p53-dependent G2 arrest of normal fibrob- lasts. Proc Natl Acad Sci USA. 2000; 97(19):10544-10548.
18. Packham G, Cleveland JL. c-Myc and apop- tosis. Biochim Biophys Acta. 1995; 1242(1):11-28.
19. Prescott JE, Osthus RC, Lee LA, et al. A novel c-Myc-responsive gene, JPO1, partic- ipates in neoplastic transformation. J Biol Chem. 2001;276(51):48276-48284.
20. Osthus RC, Karim B, Prescott JE, et al. The Myc target gene JPO1/CDCA7 is frequent- ly overexpressed in human tumors and has limited transforming activity in vivo. Cancer Res. 2005;65(13):5620-5627.
21. Gill RM, Gabor TV, Couzens AL, Scheid MP. The MYC-associated protein CDCA7 is phosphorylated by AKT to regulate MYC-dependent apoptosis and transfor- mation. Mol Cell Biol. 2013;33(3):498-513.
22. Goto Y, Hayashi R, Muramatsu T, et al. JPO1/CDCA7, a novel transcription factor E2F1-induced protein, possesses intrinsic transcriptional regulator activity. Biochim Biophys Acta. 2006;1759(1-2):60-68.
23. Thijssen PE, Ito Y, Grillo G, et al. Mutations in CDCA7 and HELLS cause immunodefi- ciency-centromeric instability-facial anom- alies syndrome. Nat Commun. 2015; 6:7870.
24. Jenness C, Giunta S, Muller MM, Kimura H, Muir TW, Funabiki H. HELLS and CDCA7 comprise a bipartite nucleosome remodeling complex defective in ICF syn- drome. Proc Natl Acad Sci USA. 2018; 115(5):E876-E885.
25. Whitfield ML, Sherlock G, Saldanha AJ, et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell. 2002;13(6):1977-2000.
26. Esteban V, Mendez-Barbero N, Jimenez- Borreguero LJ, et al. Regulator of cal- cineurin 1 mediates pathological vascular wall remodeling. J Exp Med. 2011; 208(10):2125-2139.
27. Campanero MR, Herrero A, Calvo V. The histone deacetylase inhibitor trichostatin A induces GADD45 gamma expression via Oct and NF-Y binding sites. Oncogene. 2008;27(9):1263-1272.
28. Campanero MR, Armstrong M, Flemington E. Distinct cellular factors regulate the c-
myb promoter through its E2F element.
Mol Cell Biol. 1999;19(12):8442-8450.
29. Alvaro-Blanco J, Urso K, Chiodo Y, et al. MAZ induces MYB expression during the exit from quiescence via the E2F site in the MYB promoter. Nucleic Acids Res.
2017;45(17):9960-9975.
30. Molina-Privado I, Rodriguez-Martinez M,
Rebollo P, et al. E2F1 expression is deregu- lated and plays an oncogenic role in spo- radic Burkitt's lymphoma. Cancer Res. 2009;69(9):4052-4058.
31. Alvaro-Blanco J, Martinez-Gac L, Calonge E, et al. A novel factor distinct from E2F medi- ates C-MYC promoter activation through its E2F element during exit from quiescence. Carcinogenesis. 2009; 30(3): 440-448.
32. Molina-Privado I, Jimenez PR, Montes- Moreno S, et al. E2F4 plays a key role in Burkitt lymphoma tumorigenesis. Leukemia. 2012;28(10):2277-2285.
33. Richter J, Schlesner M, Hoffmann S, et al. Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing. Nat Genet. 2012;44(12):1316- 1320.
34. Love C, Sun Z, Jima D, et al. The genetic landscape of mutations in Burkitt lym- phoma. Nat Genet. 2012;44(12):1321-1325.
35. Guiu J, Bergen DJ, De Pater E, et al. Identification of Cdca7 as a novel Notch transcriptional target involved in hematopoietic stem cell emergence. J Exp Med. 2014;211(12):2411-2423.
36. Ross DT, Scherf U, Eisen MB, et al. Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet. 2000;24(3):227-235.
37. Wolfenson H, Bershadsky A, Henis YI, Geiger B. Actomyosin-generated tension controls the molecular kinetics of focal adhe- sions. J Cell Sci. 2011;124(Pt 9):1425-1432.
1678
haematologica | 2018; 103(10)


































































































   110   111   112   113   114