Page 101 - 2018_09-Mondo
P. 101

Improving T-ALL sensitivity to parthenolide
References
1. Schrappe M, Hunger SP, Pui CH, et al. Outcomes after induction failure in child- hood acute lymphoblastic leukemia. N Engl J Med. 2012;366(15):1371-1381.
2. Hunger SP, Mullighan CG. Acute Lymphoblastic Leukemia in Children. N Engl J Med. 2015;373(16):1541-1552.
3. Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nature Rev Drug Discov. 2009;8(7):579-591.
4. Silva A, Yunes JA, Cardoso BA, et al. PTEN posttranslational inactivation and hyperacti- vation of the PI3K/Akt pathway sustain pri- mary T cell leukemia viability. J Clin Invest. 2008;118(11):3762-3774.
5. Giambra V, Jenkins CR, Wang H, et al. NOTCH1 promotes T cell leukemia-initiat- ing activity by RUNX-mediated regulation of PKC-theta and reactive oxygen species. Nat Med. 2012;18(11):1693-1698.
6. Guzman ML, Rossi R, Karnischky L, et al. The sesquiterpene lactone parthenolide induces apoptosis of human acute myeloge- nous leukemia stem and progenitor cells. Blood. 2005;105(11):4163-4169.
7. Steele AJ, Jones DT, Ganeshaguru K, et al. The sesquiterpene lactone parthenolide induces selective apoptosis of B-chronic lymphocytic leukemia cells in vitro. Leukemia. 2006;20(6):1073-1079.
8. Diamanti P, Cox CV, Moppett JP, Blair A. Parthenolide eliminates leukemia-initiating cell populations and improves survival in xenografts of childhood acute lymphoblas- tic leukemia. Blood. 2013;121(8):1384-1393.
9. Zhang W, Trachootham D, Liu J, et al. Stromal control of cystine metabolism pro- motes cancer cell survival in chronic lym- phocytic leukaemia. Nat Cell Biol. 2012;14(3):276-286.
10. Wu KN, Zhao YM, He Y, et al. Rapamycin interacts synergistically with idarubicin to induce T-leukemia cell apoptosis in vitro and in a mesenchymal stem cell simulated drug- resistant microenvironment via Akt/mam- malian target of rapamycin and extracellular signal-related kinase signaling pathways. Leuk Lymphoma. 2014;55(3): 668-676.
11. JacamoR,ChenY,WangZ,etal.Reciprocal leukemia-stroma VCAM-1/VLA-4-depen- dent activation of NF-kappaB mediates chemoresistance. Blood. 2014;123(17):2691- 2702.
12. Duan CW, Shi J, Chen J, et al. Leukemia propagating cells rebuild an evolving niche in response to therapy. Cancer Cell. 2014;25(6):778-793.
13. XiaB,TianC,GuoS,etal.c-Mycplayspart in drug resistance mediated by bone mar- row stromal cells in acute myeloid leukemia. Leuk Res. 2015;39(1):92-99.
14. Lewerenz J, Hewett SJ, Huang Y, et al. The
cystine/glutamate antiporter system x(c)(-) in health and disease: from molecular mech- anisms to novel therapeutic opportunities. Antioxid Redox Signal. 2013;18(5):522-555.
15. Baranello MP, Bauer L, Jordan CT, Benoit DSW. Micelle Delivery of Parthenolide to Acute Myeloid Leukemia Cells. Cell Mol Bioneng. 2015;8(3):455-470.
16. Zong H, Sen S, Zhang G, et al. In vivo target- ing of leukemia stem cells by directing parthenolide-loaded nanoparticles to the bone marrow niche. Leukemia. 2016;30(7): 1582-1586.
17. Deller RC, Diamanti P, Morrison G, et al. Functionalized Triblock Copolymer Vectors for the Treatment of Acute Lymphoblastic Leukemia. Mol Pharm. 2017;14(3):722-732.
18. Ridolfo R, Ede B, Diamanti P, et al. Drug loaded nanovectors via direct hydration as a new platform for cancer therapeutics. Small. 2018 Jul 12:e1703774. doi: 10.1002/ smll.201703774. [Epub ahead of print]
19. Tyagi V, Alwaseem H, O'Dwyer KM, et al. Chemoenzymatic synthesis and antileukemic activity of novel C9- and C14- functionalized parthenolide analogs. Bioorg Med Chem. 2016;24(17):3876-3886.
20. Hawkins ED, Duarte D, Akinduro O, et al. T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvi- ronments. Nature. 2016;538(7626):518-522.
21. Pei S, Minhajuddin M, Callahan KP, et al. Targeting aberrant glutathione metabolism to eradicate human acute myelogenous leukemia cells. J Biol Chem. 2013;288 (47):33542-33558.
22. Zunino SJ, Ducore JM, Storms DH. Parthenolide induces significant apoptosis and production of reactive oxygen species in high-risk pre-B leukemia cells. Cancer Lett. 2007;254(1):119-127.
23. Lu SC. Glutathione synthesis. Biochim Biophys Acta. 2013;1830(5):3143-3153.
24. Lagadinou ED, Sach A, Callahan K, et al.
BCL-2 inhibition targets oxidative phospho- rylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell. 2013;12(3):329-341.
25. Diehn M, Cho RW, Lobo NA, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458(7239):780-783.
26. Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol. 2005;45:51-88.
27. Winter SS, Sweatman JJ, Lawrence MB, Rhoades TH, Hart AL, Larson RS. Enhanced T-lineage acute lymphoblastic leukaemia cell survival on bone marrow stroma requires involvement of LFA-1 and ICAM-1. Br J Haematol. 2001;115(4):862-871.
28. Iwamoto S, Mihara K, Downing JR, Pui CH, Campana D. Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest.
2007;117(4):1049-1057.
29. Laranjeira AB, de Vasconcellos JF, Sodek L, et
al. IGFBP7 participates in the reciprocal interaction between acute lymphoblastic leukemia and BM stromal cells and in leukemia resistance to asparaginase. Leukemia. 2012;26(5):1001-1011.
30. Sato H, Tamba M, Ishii T, Bannai S. Cloning and expression of a plasma membrane cys- tine/glutamate exchange transporter com- posed of two distinct proteins. J Biol Chem. 1999;274(17):11455-11458.
31. Sato H, Tamba M, Kuriyama-Matsumura K, Okuno S, Bannai S. Molecular cloning and expression of human xCT, the light chain of amino acid transport system xc. Antioxid Redox Signal. 2000;2(4):665-671.
32. Aoki Y, Watanabe T, Saito Y, et al. Identification of CD34+ and CD34- leukemia-initiating cells in MLL-rearranged human acute lymphoblastic leukemia. Blood. 2015;125(6):967-980.
33. Boutter J, Huang Y, Marovca B, et al. Image- based RNA interference screening reveals an individual dependence of acute lymphoblas- tic leukemia on stromal cysteine support. Oncotarget. 2014;5(22):11501-11512.
34. Johnson SM, Dempsey C, Chadwick A, et al. Metabolic reprogramming of bone mar- row stromal cells by leukemic extracellular vesicles in acute lymphoblastic leukemia. Blood. 2016;128(3):453-456.
35. Yoshikawa M, Tsuchihashi K, Ishimoto T, et al. xCT inhibition depletes CD44v-express- ing tumor cells that are resistant to EGFR- targeted therapy in head and neck squa- mous cell carcinoma. Cancer Res. 2013;73(6):1855-1866.
36. Balza E, Castellani P, Delfino L, Truini M, Rubartelli A. The pharmacologic inhibition of the xc– antioxidant system improves the antitumor efficacy of COX inhibitors in the in vivo model of 3-MCA tumorigenesis. Carcinogenesis. 2013;34(3):620-626.
37. Lanzardo S, Conti L, Rooke R, et al. Immunotargeting of Antigen xCT Attenuates Stem-like Cell Behavior and Metastatic Progression in Breast Cancer. Cancer Res. 2016;76(1):62-72.
38. Liu R, Blower PE, Pham AN, et al. Cystine- glutamate transporter SLC7A11 mediates resistance to geldanamycin but not to 17- (allylamino)-17-demethoxygeldanamycin. Mol Pharmacol. 2007;72(6):1637-1646.
39. Le Blanc K, Samuelsson H, Gustafsson B, et al. Transplantation of mesenchymal stem cells to enhance engraftment of hematopoi- etic stem cells. Leukemia. 2007;21(8):1733- 1738.
40. Koc ON, Gerson SL, Cooper BW, et al. Rapid hematopoietic recovery after coinfu- sion of autologous-blood stem cells and cul- ture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol. 2000;18(2):307-316.
haematologica | 2018; 103(9)
1501


































































































   99   100   101   102   103