Page 31 - Haematologica August 2018
P. 31

Immune escape mechanisms in lymphoma
nation of non-Hodgkin lymphoma requires CD47 and is inhibited by anti-CD47 anti- body therapy. Blood. 2011;118(18):4890- 4901.
114.Liu X, Pu Y, Cron K, et al. CD47 blockade triggers T cell–mediated destruction of immunogenic tumors. Nat Med. 2015;21 (10):1209-1215.
115. Peter ME, Hadji A, Murmann AE, et al. The role of CD95 and CD95 ligand in cancer. Cell Death Differ. 2015;22(4):549-559.
116.Müllauer L, Mosberger I, Chott A. Fas ligand expression in nodal non-Hodgkin’s lym- phoma. Mod Pathol. 1998;11(4):369-375.
117. Verbeke CS, Wenthe U, Grobholz R, Zentgraf H. Fas ligand expression in Hodgkin lymphoma. Am J Surg Pathol. 2001;25(3):388-394.
118. Scott DW, Gascoyne RD. The tumour microenvironment in B cell lymphomas. Nat Rev Cancer. 2014;14(8):517-534.
119. Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A. Interleukin-10 and the inter- leukin-10 receptor. Annu Rev Immunol. 2001;19683-765.
120. Bien E, Balcerska A, Adamkiewicz- Drozynska E, Rapala M, Krawczyk M, Stepinski J. Pre-treatment serum levels of interleukin-10, interleukin-12 and their ratio predict response to therapy and probability of event-free and overall survival in child- hood soft tissue sarcomas, Hodgkin’s lym- phomas and acute lymphoblastic leukemias. Clin Biochem. 2009;42(10–11):1144-1157.
121. Lech-Maranda E, Bienvenu J, Broussais- Guillaumot F, et al. Plasma TNF- and IL-10 Level-Based Prognostic Model Predicts Outcome of Patients with Diffuse Large B- Cell Lymphoma in Different Risk Groups Defined by the International Prognostic Index. Arch Immunol Ther Exp (Warsz). 2010;58(2):131-141.
122. Visco C, Vassilakopoulos TP, Kliche KO, et al. Elevated Serum Levels of IL-10 are Associated with Inferior Progression-Free Survival in Patients with Hodgkin’s Disease Treated with Radiotherapy. Leuk Lymphoma. 2004;45(10):2085-2092.
123. Yang Z-Z, Grote DM, Xiu B, et al. TGF- upregulates CD70 expression and induces exhaustion of effector memory T cells in B- cell non-Hodgkin’s lymphoma. Leukemia. 2014;28(9):1872-1884.
124. Taylor JG, Gribben JG. Microenvironment abnormalities and lymphomagenesis: Immunological aspects. Semin Cancer Biol. 2015;3436-45.
130. Choe J-Y, Yun JY, Jeon YK, et al. Indoleamine 2, 3-dioxygenase (IDO) is frequently expressed in stromal cells of Hodgkin lym- phoma and is associated with adverse clini- cal features: a retrospective cohort study. BMC Cancer. 2014;14(1):1.
131.Ninomiya S, Hara T, Tsurumi H, et al. Indoleamine 2,3-dioxygenase in tumor tis- sue indicates prognosis in patients with dif- fuse large B-cell lymphoma treated with R- CHOP. Ann Hematol. 2011;90(4):409-416. Yoshikawa T, Hara T, Tsurumi H, et al. Serum concentration of L-kynurenine pre- dicts the clinical outcome of patients with dif- fuse large B-cell lymphoma treated with R- CHOP. Eur J Haematol. 2010;84(4):304-309.
133. Liu X-Q, Lu K, Feng L-L, et al. Up-regulated expression of indoleamine 2,3-dioxygenase 1 in non-Hodgkin lymphoma correlates with increased regulatory T-cell infiltration. Leuk Lymphoma. 2014;55(2):405-414. Masaki A, Ishida T, Maeda Y, et al. Clinical significance of tryptophan catabolism in Hodgkin lymphoma. Cancer Sci. 2018;109(1):74-83.
135. Giordano M, Croci DO, Rabinovich GA. Galectins in hematological malignancies: Curr Opin Hematol. 2013;20(4):327–335.
136. Hoyer KK, Pang M, Gui D, et al. An anti- apoptotic role for galectin-3 in diffuse large B-cell lymphomas. Am J Pathol. 2004;164 (3):893-902.
137. Clark MC, Pang M, Hsu DK, et al. Galectin- 3 binds to CD45 on diffuse large B-cell lym- phoma cells to regulate susceptibility to cell death. Blood. 2012;120(23):4635-4644.
138. Lindqvist CA, Loskog ASI. T regulatory cells in B-cell malignancy - tumour support or kiss of death? Immunology. 2012;135(4): 255-260.
139.Mittal S, Marshall NA, Duncan L, Culligan DJ, Barker RN, Vickers MA. Local and sys- temic induction of CD4+ CD25+ regulatory T-cell population by non-Hodgkin lym- phoma. Blood. 2008;111(11): 5359-5370.
140.Wu W, Wan J, Xia R, Huang Z, Ni J, Yang M. Functional role of regulatory T cells in B cell lymphoma and related mechanisms. Int J Clin Exp Pathol. 2015;8(8):9133.
141. Ishida T, Ueda R. CCR4 as a novel molecular target for immunotherapy of cancer. Cancer Sci. 2006;97(11):1139-1146.
142.Liu X, Venkataraman G, Lin J, et al. Highly clonal regulatory T-cell population in follicu- lar lymphoma - inverse correlation with the diversity of CD8(+) T cells. Oncoimmunology. 2015;4(5):e1002728.
143.Chang C, Wu S-Y, Kang Y-W, et al. High Levels of Regulatory T Cells in Blood Are a Poor Prognostic Factor in Patients With Diffuse Large B-Cell Lymphoma. Am J Clin Pathol. 2015;144(6):935-944.
144. Roussel M, Irish JM, Menard C, Lhomme F, Tarte K, Fest T. Regulatory myeloid cells: an underexplored continent in B-cell lym- phomas. Cancer Immunol Immunother. 2017;66(8):1103–1111.
145. Azzaoui I, Uhel F, Rossille D, et al. T-cell defect in diffuse large B-cell lymphomas involves expansion of myeloid-derived sup- pressor cells. Blood. 2016;128(8):1081-1092.
146. Komohara Y, Niino D, Ohnishi K, Ohshima K, Takeya M. Role of tumor-associated macrophages in hematological malignan- cies: TAMs in hematological malignancies. Pathol Int. 2015;65(4):170-176.
147.Guo B, Cen H, Tan X, Ke Q. Meta-analysis of the prognostic and clinical value of tumor- associated macrophages in adult classical Hodgkin lymphoma. BMC Med. 2016;14 (1):159.
148. Koh YW, Shin S-J, Park C, Yoon DH, Suh C, Huh J. Absolute monocyte count predicts overall survival in mantle cell lymphomas: correlation with tumour-associated macrophages. Hematol Oncol. 2014;32(4): 178-186.
149.Kessel A, Rosner I, Toubi E. Rituximab: Beyond Simple B Cell Depletion. Clin Rev Allergy Immunol. 2008;34(1):74-79.
150. Canioni D, Salles G, Mounier N, et al. High Numbers of Tumor-Associated Macrophages Have an Adverse Prognostic Value That Can Be Circumvented by Rituximab in Patients With Follicular Lymphoma Enrolled Onto the GELA-GOE- LAMS FL-2000 Trial. J Clin Oncol. 2008;26(3):440-446.
151.Takakuwa T, Dong Z, Nakatsuka S, et al. Frequent mutations of Fas gene in nasal NK/T cell lymphoma. Oncogene. 2002;21(30):4702.
152. Contassot E, French LE. Epigenetic Causes of Apoptosis Resistance in Cutaneous T-Cell Lymphomas. J Invest Dermatol. 2010;130(4): 922-924.
153.Oyarzo MP, Medeiros LJ, Atwell C, et al. c- FLIP confers resistance to FAS-mediated apoptosis in anaplastic large-cell lymphoma. Blood. 2006;107(6):2544-2547.
154. Falchi L. Immune Dysfunction in Non- Hodgkin Lymphoma: Avenues for New Immunotherapy-Based Strategies. Curr Hematol Malig Rep. 2017;12(5):484-494.
125. Mao S, Yang W, Ai L,
Transforming growth factor
tor as a marker in diffuse large B cell lym- phoma. Tumor Biol. 2015;36(12):9903-9908.
126. Pan H, Jiang Y, Boi M, et al. Epigenomic evo- lution in diffuse large B-cell lymphomas. Nat Commun. 2015;66921.
127. Bakkebø M, Huse K, Hilden VI, Smeland EB, Oksvold MP. TGF- -induced growth inhibi- tion in B-cell lymphoma correlates with Smad1/5 signalling and constitutively active p38 MAPK. BMC Immunol. 2010;11(1):57.
128.Yokoyama M, Ichinoe M, Okina S, et al. CD109, a negative regulator of TGF- signal- ing, is a putative risk marker in diffuse large B-cell lymphoma. Int J Hematol. 2017;105(5):614-622.
129. Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB. Tryptophan-derived catabolites are respon- sible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3- dioxygenase. J Exp Med. 2002;196(4):459- 468.
156.Vermeer MH, van Doorn R, Dukers D, Bekkenk MW, Meijer CJLM, Willemze R. CD8+ T Cells in Cutaneous T-Cell Lymphoma: Expression of Cytotoxic Proteins, Fas Ligand, and Killing Inhibitory Receptors and Their Relationship With Clinical Behavior. J Clin Oncol. 2001;19(23):4322-4329.
157. Masaki A, Ishida T, Maeda Y, et al. Prognostic Significance of Tryptophan Catabolism in Adult T-cell Leukemia/Lymphoma. Clin Cancer Res. 2015;21(12):2830-2839.
158. Batlevi CL, Matsuki E, Brentjens RJ, Younes A. Novel immunotherapies in lymphoid malignancies. Nat Rev Clin Oncol. 2015;13(1):25-40.
159. Manson G, Houot R. Next generation immunotherapies for lymphoma: one foot in the future. Ann Oncol. 2018;29(3):588-601
160. Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G. Immunological aspects of can- cer chemotherapy. Nat Rev Immunol. 2008;8(1):59-73.
161. Puvvada SD, Li H, Rimsza LM, et al. A phase II study of belinostat (PXD101) in relapsed and refractory aggressive B-cell lymphomas: SWOG S0520. Leuk Lymphoma. 2016;57 (10):2359-2369.
162.Persky DO, Li H, Rimsza LM, et al. A phase I/II trial of vorinostat (SAHA) in combination with rituximab-CHOP in patients with newly diagnosed advanced stage diffuse large B-cell lymphoma (DLBCL): SWOG S0806. Am J Hematol. 2018;93(4):486-493.
163 Davids MS. Targeting BCL-2 in B-cell lym- phomas. Blood. 2017;130(9):1081-1088. 164.Galluzzi L, Buqué A, Kepp O, Zitvogel L,
Kroemer G. Immunological Effects of Conventional Chemotherapy and Targeted
Li Z, Jin J. type II recep-
132.
134.
155.
Ni X, Hazarika P, Zhang C, Talpur R, Duvic M. Fas Ligand Expression by Neoplastic T Lymphocytes Mediates Elimination of CD8+ Cytotoxic T Lymphocytes in Mycosis Fungoides: A Potential Mechanism of Tumor Immune Escape? Clin Cancer Res. 2001;7(9):2682-2692.
haematologica | 2018; 103(8)
1267


































































































   29   30   31   32   33