Page 29 - Haematologica August 2018
P. 29

Immune escape mechanisms in lymphoma
associated with suppressed antigen presen- tation. Proc Natl Acad Sci USA. 2015;112 (10): E1116-E1125.
18. Pasqualucci L, Khiabanian H, Fangazio M, et al. Genetics of Follicular Lymphoma Transformation. Cell Rep. 2014;6(1):130-140.
19. Kridel R, Chan FC, Mottok A, et al. Histological Transformation and Progression in Follicular Lymphoma: A Clonal Evolution Study. PLOS Med. 2016;13(12):e1002197.
20. Drenou B, Tilanus M, Semana G, et al. Loss of heterozygosity, a frequent but a non- exclusive mechanism responsible for HLA dysregulation in non-Hodgkin’s lym- phomas. Br J Haematol. 2004;127(1):40-49.
21. Lohr JG, Stojanov P, Lawrence MS, et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc Natl Acad Sci USA. 2012;109(10):3879-3884.
22. Cao Y, Zhu T, Zhang P, et al. Mutations or copy number losses of CD58 and TP53 genes in diffuse large B cell lymphoma are independent unfavorable prognostic factors. Oncotarget. 2016;7(50):83294–83307.
23. Jiang Y, Ortega-Molina A, Geng H, et al. CREBBP Inactivation Promotes the Development of HDAC3-Dependent Lymphomas. Cancer Discov. 2017;7(1):38- 53.
24. Zhang J, Vlasevska S, Wells VA, et al. The CREBBP Acetyltransferase Is a Haploinsufficient Tumor Suppressor in B- cell Lymphoma. Cancer Discov. 2017;7(3):322-337.
25. Hashwah H, Schmid CA, Kasser S, et al. Inactivation of CREBBP expands the germi- nal center B cell compartment, down-regu- lates MHCII expression and promotes DLBCL growth. Proc Natl Acad Sci USA. 2017;114(36):9701-9706.
26. Tada K, Maeshima AM, Hiraoka N, et al. Prognostic significance of HLA class I and II expression in patients with diffuse large B cell lymphoma treated with standard chemoimmunotherapy. Cancer Immunol Immunother. 2016;65(10):1213-1222.
27. Rimsza LM. Loss of MHC class II gene and protein expression in diffuse large B-cell lymphoma is related to decreased tumor immunosurveillance and poor patient sur- vival regardless of other prognostic factors: a follow-up study from the Leukemia and Lymphoma Molecular Profiling Project. Blood. 2004;103(11):4251-4258.
28. Rosenwald A, Wright G, Chan WC, et al. The use of molecular profiling to predict sur- vival after chemotherapy for diffuse large-B- cell lymphoma. N Engl J Med. 2002;346(25):1937-1947.
29. Kendrick S, Rimsza LM, Scott DW, et al. Aberrant cytoplasmic expression of MHCII confers worse progression free survival in diffuse large B-cell lymphoma. Virchows Arch. 2017;470(1):113-117.
30. Rimsza LM. Loss of major histocompatibili- ty class II expression in non-immune-privi- leged site diffuse large B-cell lymphoma is highly coordinated and not due to chromo- somal deletions. Blood. 2005;107(3):1101- 1107.
31. Pasqualucci L, Trifonov V, Fabbri G, et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet. 2011;43(9):830-837.
32. Cycon KA, Rimsza LM, Murphy SP. Alterations in CIITA constitute a common mechanism accounting for downregulation of MHC class II expression in diffuse large B- cell lymphoma (DLBCL). Exp Hematol.
2009;37(2):184-194.e2.
33. Cycon KA, Mulvaney K, Rimsza LM, Persky
D, Murphy SP. Histone deacetylase inhibitors activate CIITA and MHC class II antigen expression in diffuse large B-cell lymphoma. Immunology. 2013;140(2):259- 272.
34. Pasqualucci L, Dominguez-Sola D, Chiarenza A, et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature. 2011;471(7337):189-195.
35. Autio M, Jäntti K, Cervera A, Hautaniemi S, Leppä S. Low Expression of the CIITA Gene Predicts Poor Outcome in Diffuse Large B- Cell Lymphoma. Blood 2016;128(22):2948.
36. Brown PJ, Wong KK, Felce SL, et al. FOXP1 suppresses immune response signatures and MHC class II expression in activated B-cell- like diffuse large B-cell lymphomas. Leukemia. 2016;30(3):605-616.
37. Hans CP. Confirmation of the molecular classification of diffuse large B-cell lym- phoma by immunohistochemistry using a tissue microarray. Blood. 2004;103(1):275- 282.
38. Koon HB, Ippolito GC, Banham AH, Tucker PW. FOXP1: a potential therapeutic target in cancer. Expert Opin Ther Targets. 2007;11(7):955-965.
39. Haralambieva E, Adam P, Ventura R, et al. Genetic rearrangement of FOXP1 is pre- dominantly detected in a subset of diffuse large B-cell lymphomas with extranodal presentation. Leukemia. 2006;20(7):1300- 1303.
40. Bea S. Diffuse large B-cell lymphoma sub- groups have distinct genetic profiles that influence tumor biology and improve gene- expression-based survival prediction. Blood. 2005;106(9):3183-3190.
41. Mottok A, Woolcock B, Chan FC, et al. Genomic Alterations in CIITA Are Frequent in Primary Mediastinal Large B Cell Lymphoma and Are Associated with Diminished MHC Class II Expression. Cell Rep. 2015;13(7):1418-1431.
42. Steidl C, Shah SP, Woolcock BW, et al. MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature. 2011;471(7338):377-381.
43. Roberts RA. Loss of major histocompatibili- ty class II gene and protein expression in pri- mary mediastinal large B-cell lymphoma is highly coordinated and related to poor patient survival. Blood. 2006;108(1):311-318.
44. Loeffler M, Kreuz M, et al; on behalf of the HaematoSys-Project. Genomic and epige- nomic co-evolution in follicular lymphomas. Leukemia. 2015;29(2):456-463.
45. Green MR, Gentles AJ, Nair RV, et al. Hierarchy in somatic mutations arising dur- ing genomic evolution and progression of follicular lymphoma. Blood. 2013;121(9): 1604-1611.
46. Diepstra A, van Imhoff GW, Karim-Kos HE, et al. HLA Class II Expression by Hodgkin Reed-Sternberg Cells Is an Independent Prognostic Factor in Classical Hodgkin’s Lymphoma. J Clin Oncol. 2007;25(21):3101- 3108.
47. Brown P, Marafioti T, Kusec R, Banham AH. The FOXP1 Transcription Factor is Expressed in the Majority of Follicular Lymphomas but is Rarely Expressed in Classical and Lymphocyte Predominant Hodgkin’s Lymphoma. J Mol Histol. 2005;36(4):249-256.
48. Riemersma SA, Jordanova ES, Schop RF, et al. Extensive genetic alterations of the HLA region, including homozygous deletions of
HLA class II genes in B-cell lymphomas aris- ing in immune-privileged sites. Blood. 2000;96(10):3569-3577.
49. Mottok A, Steidl C. Genomic alterations underlying immune privilege in malignant lymphomas. Curr Opin Hematol. 2015;22(4):343-354.
50. Twa DD, Mottok A, Chan FC, et al. Recurrent genomic rearrangements in pri- mary testicular lymphoma: Genomic rearrangements in primary testicular lym- phoma. J Pathol. 2015;236(2):136-141.
51. He Y, Rivard CJ, Rozeboom L, et al. Lymphocyte-activation gene-3, an impor- tant immune checkpoint in cancer. Cancer Sci. 2016;107(9):1193-1197.
52. Laurent C, Charmpi K, Gravelle P, et al. Several immune escape patterns in non- Hodgkin’s lymphomas. OncoImmunology. 2015;4(8):e1026530.
53. Gandhi MK. Expression of LAG-3 by tumor- infiltrating lymphocytes is coincident with the suppression of latent membrane anti- gen-specific CD8+ T-cell function in Hodgkin lymphoma patients. Blood. 2006;108(7):2280-2289.
54. God JM, Cameron C, Figueroa J, et al. Elevation of c-MYC Disrupts HLA Class II– Mediated Immune Recognition of Human B Cell Tumors. J Immunol. 2015;194(4):1434- 1445.
55. Phipps-Yonas H, Cui H, Sebastiao N, et al. Low GILT Expression is Associated with Poor Patient Survival in Diffuse Large B-Cell Lymphoma. Front Immunol. 2013;4:425.
56. Sharpe AH, Freeman GJ. THE B7–CD28 SUPERFAMILY. Nat Rev Immunol. 2002; 2(2):116-126.
57. Greaves P, Gribben JG. The role of B7 family molecules in hematologic malignancy. Blood. 2013;121(5):734-744.
58. Dakappagari N, Ho SN, Gascoyne RD, Ranuio J, Weng AP, Tangri S. CD80 (B7.1) is expressed on both malignant B cells and nonmalignant stromal cells in non-Hodgkin lymphoma. Cytometry B Clin Cytom. 2012;82B(2):112-119.
59. Stopeck AT, Gessner A, Miller TP, et al. Loss of B7. 2 (CD86) and intracellular adhesion molecule 1 (CD54) expression is associated with decreased tumor-infiltrating T lympho- cytes in diffuse B-cell large-cell lymphoma. Clin Cancer Res. 2000;6(10):3904-3909.
60. Terol MJ, López-Guillermo A, Bosch F, et al. Expression of the adhesion molecule ICAM- 1 in non-Hodgkin’s lymphoma: relationship with tumor dissemination and prognostic importance. J Clin Oncol. 1998;16(1):35-40.
61. Muris JJ, Meijer CJ, Ossenkoppele GJ, Vos W, Oudejans JJ. Apoptosis resistance and response to chemotherapy in primary nodal diffuse large B-cell lymphoma. Hematol Oncol. 2006;24(3):97-104.
62. Muris JJF, Ylstra B, Cillessen SAGM, et al. Profiling of apoptosis genes allows for clini- cal stratification of primary nodal diffuse large B-cell lymphomas. Br J Haematol. 2007;136(1):38-47.
63. Bladergroen BA, Meijer CJLM, ten Berge RL, et al. Expression of the granzyme B inhibitor, protease inhibitor 9, by tumor cells in patients with non-Hodgkin and Hodgkin lymphoma: a novel protective mechanism for tumor cells to circumvent the immune system? Blood. 2002;99(1):232-237.
64. Bird CH, Sutton VR, Sun J, et al. Selective Regulation of Apoptosis: the Cytotoxic Lymphocyte Serpin Proteinase Inhibitor 9 Protects against Granzyme B-Mediated Apoptosis without Perturbing the Fas Cell
haematologica | 2018; 103(8)
1265


































































































   27   28   29   30   31