Page 69 - Haematologica June
P. 69

and collecting samples from patients, as well as Abigail Smith, Ph.D., Emily Miedel, VMD, and the animal care technicians for their help with our animal colony. We thank Dr Dominique Bonnet for performing the genetic analysis of the MDS cells. We thank the Cancer Histology Core of the University of Pennsylvania for section-
ing and staining the micromass MSC and Dr George Dodge for providing us with the primary chondrocytes. Financial support was provided by the Evans Foundation, the Hematologic Malignancies Translational Center of Excellence of the Abramson Cancer Center and NIH grants - R01CA149566 and R01CA198089.
References
1. Tallman MS, Gilliland DG, Rowe JM. Drug therapy for acute myeloid leukemia. Blood. 2005;106(4):1154–1163.
2. Walter MJ, Shen D, Ding L, et al. Clonal architecture of secondary acute myeloid leukemia. N Engl J Med. 2012;366(12):1090– 1098.
3. Will B, Zhou L, Vogler TO, et al. Stem and progenitor cells in myelodysplastic syn- dromes show aberrant stage-specific expan- sion and harbor genetic and epigenetic alter- ations. Blood. 2012;120(10):2076–2086.
4. Woll PS, Kjällquist U, Chowdhury O, et al. Myelodysplastic syndromes are propagated by rare and distinct human cancer stem cells in vivo. Cancer Cell. 2014;25(6):794–808.
5. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4(1-2):7–25.
6. Lane SW, Scadden DT, Gilliland DG. The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood. 2009;114(6):1150–1157.
7. Suda T, Arai F, Hirao A. Hematopoietic stem cells and their niche. Trends Immunol. 2005;26(8):426–433.
8. Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. 2006;6(2): 93–106.
9. Méndez-Ferrer S, Lucas D, Battista M, Frenette PS. Haematopoietic stem cell release is regulated by circadian oscillations. Nature. 2008;452(7186):442–447.
10. Yamazaki S, Ema H, Karlsson G, et al. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell. 2011;147(5):1146– 1158.
11. Taichman RS, Emerson SG. The role of osteoblasts in the hematopoietic microenvi- ronment. Stem Cells. 1998;16(1):7–15.
12. Calvi LM, Adams GB, Weibrecht KW, et al. Osteoblastic cells regulate the haematopoi- etic stem cell niche. Nature. 2003;425 (6960):841–846.
13. Kremer KN, Dudakovic A, McGee- Lawrence ME, et al. Osteoblasts protect AML cells from SDF-1-induced apoptosis. J Cell Biochem. 2014;115(6):1128–1137.
14. Tavor S, Petit I, Porozov S, et al. CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice. Cancer Res. 2004;64(8):2817–2824.
15. Colmone A, Amorim M, Pontier AL, Wang S, Jablonski E, Sipkins DA. Leukemic cells create
bone marrow niches that disrupt the behav- ior of normal hematopoietic progenitor cells. Science. 2008;322(5909):1861–1865.
16. Zhang Y, Xie R-L, Croce CM, et al. A pro- gram of microRNAs controls osteogenic lin- eage progression by targeting transcription factor Runx2. Proc Natl Acad Sci USA. 2011;108(24):9863–9868.
17. Schepers K, Pietras EM, Reynaud D, et al. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self- reinforcing leukemic niche. Stem Cell. 2013;13(3):285–299.
18. Sanchez PV, Perry RL, Sarry JE, et al. A robust xenotransplantation model for acute myeloid leukemia. Leukemia. 2009;23(11): 2109–2117.
19. Wunderlich M, Chou F-S, Link KA, et al. AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice con- stitutively expressing human SCF, GM-CSF and IL-3. Leukemia. 2010;24(10):1785–1788.
20. Medyouf H, Mossner M, Jann J-C, et al. Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit. Cell Stem Cell. 2014;14(6):824–837.
21. Wunderlich M, Brooks RA, Panchal R, Rhyasen GW, Danet-Desnoyers G, Mulloy JC. OKT3 prevents xenogeneic GVHD and allows reliable xenograft initiation from unfractionated human hematopoietic tis- sues. Blood. 2014;123(24):e134–144.
22. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–737.
23. Ishikawa F, Yoshida S, Saito Y, et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone- marrow endosteal region. Nat Biotechnol. 2007;25(11):1315–1321.
24. Sarry J-E, Murphy K, Perry R, et al. Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2Rgc-deficient mice. J Clin Invest. 2011;121(1):384–395.
25. Speck NA, Gilliland DG. Core-binding fac- tors in haematopoiesis and leukaemia. Nat Rev Cancer. 2002;2(7):502–513.
26. Mrózek K, Bloomfield CD. Chromosome aberrations, gene mutations and expression changes, and prognosis in adult acute myeloid leukemia. Hematology Am Soc Hematol Educ Program. 2006;2006(1):169– 177.
27. Mrózek K, Marcucci G, Paschka P, Whitman SP, Bloomfield CD. Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal
cytogenetics: are we ready for a prognosti- cally prioritized molecular classification? Blood. 2007;109(2):431–448.
28. Kushida T, Inaba M, Hisha H, et al. Intra- bone marrow injection of allogeneic bone marrow cells: a powerful new strategy for treatment of intractable autoimmune dis- eases in MRL/lpr mice. Blood. 2001;97(10):3292–3299.
29. Miyauchi J, Kelleher CA, Yang YC, et al. The effects of three recombinant growth factors, IL-3, GM-CSF, and G-CSF, on the blast cells of acute myeloblastic leukemia maintained in short-term suspension culture. Blood. 1987;70(3):657–663.
30. Hoang T, Haman A, Goncalves O, Wong GG, Clark SC. Interleukin-6 enhances growth factor-dependent proliferation of the blast cells of acute myeloblastic-leukemia. Blood. 1988;72(2):823–826.
31. Vellenga E, Ostapovicz D, Orourke B, Griffin JD. Effects of recombinant Il-3, Gm- Csf, and G-Csf on proliferation of leukemic clonogenic cells in short-term and long-term cultures. Leukemia. 1987;1(8):584–589.
32. Miyauchi J, Kelleher CA, Wong GG, et al. The effects of combinations of the recombi- nant growth-factors Gm-Csf, G-Csf, Il-3, and Csf-1 on leukemic blast cells in suspen- sion-culture. Leukemia. 1988;2(6):382–387.
33. Kelly LM, Gilliland DG. Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet. 2002;3:179–198.
34. Ellegast JM, Rauch PJ, Kovtonyuk LV, et al. inv(16) and NPM1mut AMLs engraft human cytokine knock-in mice. Blood. 2016;128 (17):2130–2134.
35. Perl AE, Altman JK, Cortes J, et al. Selective inhibition of FLT3 by gilteritinib in relapsed or refractory acute myeloid leukaemia: a multicentre, first-in-human, open-label, phase 1-2 study. Lancet Oncol. 2017;18(8): 1061–1075.
36. Rouault-Pierre K, Mian SA, Goulard M, et al. Preclinical modeling of myelodysplastic syn- dromes. Leukemia. 2017;31(12):2702-2708.
37. Shi H, Yamamoto S, Sheng M, , et al. ASXL1 plays an important role in erythropoiesis. Sci Rep. 2016;6:28789.
38. Reinisch A, Thomas D, Corces MR, et al. A humanized bone marrow ossicle xenotrans- plantation model enables improved engraft- ment of healthy and leukemic human hematopoietic cells. Nat Med. 2016;22(7): 812–821.
39. Abarrategi A, Foster K, Hamilton A, et al. Versatile humanized niche model enables study of normal and malignant human hematopoiesis. J Clin Invest. 2017;127(2): 543–548.
haematologica | 2018; 103(6)
Cytokines increase AML but not MDS engraftment
971


































































































   67   68   69   70   71