Page 195 - Haematologica Vol. 107 - September 2022
P. 195

ARTICLE - NOTCH2 in myeloma-derived extracellular vesicles Author et al.
tors of the cancer microenvironment. Semin Cell Dev Biol.
2015;40:27-34.
6. Caivano A, Laurenzana I, De Luca L, et al. High serum levels of
extracellular vesicles expressing malignancy-related markers are released in patients with various types of hematological neoplastic disorders. Tumour Biol. 2015;36(12):9739-9752.
7. Krishnan SR, Luk F, Brown RD, et al. Isolation of human CD138(+) microparticles from the plasma of patients with multiple myeloma. Neoplasia. 2016;18(1):25-32.
8. Manier S, Liu CJ, Avet-Loiseau H, et al. Prognostic role of circu- lating exosomal miRNAs in multiple myeloma. Blood. 2017;129(17):2429-2436.
9. Caivano A, La Rocca F, Simeon V, et al. MicroRNA-155 in serum- derived extracellular vesicles as a potential biomarker for hematologic malignancies - a short report. Cell Oncol (Dordr). 2017;40(1):97-103.
10. Rajeev Krishnan S, De Rubis G, Suen H, et al. A liquid biopsy to detect multidrug resistance and disease burden in multiple myeloma. Blood Cancer J. 2020;10(3):37.
11. Wang J, De Veirman K, Faict S, et al. Multiple myeloma exo- somes establish a favourable bone marrow microenvironment with enhanced angiogenesis and immunosuppression. J Pathol. 2016;239(2):162-173.
12. Zhang L, Lei Q, Wang H, et al. Tumor-derived extracellular ves- icles inhibit osteogenesis and exacerbate myeloma bone dis- ease. Theranostics. 2019;9(1):196-209.
13. Colombo M, Giannandrea D, Lesma E, Basile A, Chiaramonte R. Extracellular vesicles enhance multiple myeloma metastatic dissemination. Int J Mol Sci. 2019;20(13):3236.
14. Colombo M, Mirandola L, Platonova N, et al. Notch-directed microenvironment reprogramming in myeloma: a single path to multiple outcomes. Leukemia. 2013;27(5):1009-1018.
15. Colombo M, Galletti S, Garavelli S, et al. Notch signaling de- regulation in multiple myeloma: a rational molecular target. On- cotarget. 2015;6(29):26826-26840.
16. Palano MT, Giannandrea D, Platonova N, et al. Jagged ligands enhance the pro-angiogenic activity of multiple myeloma cells. Cancers (Basel). 2020;12(9):2600.
17. Mirandola L, Apicella L, Colombo M, et al. Anti-Notch treatment prevents multiple myeloma cells localization to the bone mar- row via the chemokine system CXCR4/SDF-1. Leukemia. 2013;27(7):1558-1566.
18. Colombo M, Galletti S, Bulfamante G, et al. Multiple myeloma- derived Jagged ligands increases autocrine and paracrine inter- leukin-6 expression in bone marrow niche. Oncotarget. 2016;7(35):56013-56029.
19. Colombo M, Garavelli S, Mazzola M, et al. Multiple myeloma ex- ploits Jagged1 and Jagged2 to promote intrinsic and bone mar- row-dependent drug resistance. Haematologica. 2020;105(7):1925-1936.
20. Chiron D, Maiga S, Descamps G, et al. Critical role of the NOTCH ligand JAG2 in self-renewal of myeloma cells. Blood Cells Mol Dis. 2012;48(4):247-253.
21. Saltarella I, Frassanito MA, Lamanuzzi A, et al. Homotypic and heterotypic activation of the Notch pathway in multiple mye- loma-enhanced angiogenesis: a novel therapeutic target? Neo- plasia. 2019;21(1):93-105.
22. Colombo M, Thummler K, Mirandola L, et al. Notch signaling drives multiple myeloma induced osteoclastogenesis. Oncotar-
get. 2014;5(21):10393-10406.
23. Schwarzer R, Kaiser M, Acikgoez O, et al. Notch inhibition
blocks multiple myeloma cell-induced osteoclast activation.
Leukemia. 2008;22(12):2273-2277.
24. Schwarzer R, Nickel N, Godau J, et al. Notch pathway inhibition
controls myeloma bone disease in the murine MOPC315.BM
model. Blood Cancer J. 2014;4:e217.
25. Houde C, Li Y, Song L, et al. Overexpression of the NOTCH ligand
JAG2 in malignant plasma cells from multiple myeloma pa-
tients and cell lines. Blood. 2004;104(12):3697-3704.
26. van Stralen E, van de Wetering M, Agnelli L, et al. Identification of primary MAFB target genes in multiple myeloma. Exp Hema-
tol. 2009;37(1):78-86.
27. Chastagner P,Brou C. Tracking trafficking of Notch and its li-
gands in mammalian cells. Methods Mol Biol. 2014;1187:87-100. 28. Rajagopal C,Harikumar KB. The origin and functions of exo-
somes in cancer. Front Oncol. 2018;8:66.
29. Groot AJ, Habets R, Yahyanejad S, et al. Regulated proteolysis of
NOTCH2 and NOTCH3 receptors by ADAM10 and presenilins. Mol
Cell Biol. 2014;34(15):2822-2832.
30. Blaumueller CM, Qi H, Zagouras P, Artavanis-Tsakonas S. Intra-
cellular cleavage of Notch leads to a heterodimeric receptor on
the plasma membrane. Cell. 1997;90(2):281-291.
31. Raimondi L, De Luca A, Fontana S, et al. Multiple myeloma-de-
rived extracellular vesicles induce osteoclastogenesis through the activation of the XBP1/IRE1α axis. Cancers (Basel). 2020;12(8):2167.
32. Raimondo S, Saieva L, Vicario E, et al. Multiple myeloma-de- rived exosomes are enriched of amphiregulin (AREG) and acti- vate the epidermal growth factor pathway in the bone microenvironment leading to osteoclastogenesis. J Hematol Oncol. 2019;12(1):2.
33. Faict S, Muller J, De Veirman K, et al. Exosomes play a role in multiple myeloma bone disease and tumor development by tar- geting osteoclasts and osteoblasts. Blood Cancer J. 2018;8(11):105.
34. Umezu T, Tadokoro H, Azuma K, et al. Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood. 2014;124(25):3748-3757.
35. Liu Y, Zhu XJ, Zeng C, et al. Microvesicles secreted from human multiple myeloma cells promote angiogenesis. Acta Pharmacol Sin. 2014;35(2):230-238.
36. Wang Q,Lu Q. Plasma membrane-derived extracellular microve- sicles mediate non-canonical intercellular NOTCH signaling. Nat Commun. 2017;8(1):709.
37. Patel B, Patel J, Cho JH, et al. Exosomes mediate the acquisi- tion of the disease phenotypes by cells with normal genome in tuberous sclerosis complex. Oncogene. 2016;35(23):3027-3036.
38. Suwakulsiri W, Rai A, Xu R, et al. Proteomic profiling reveals key cancer progression modulators in shed microvesicles released from isogenic human primary and metastatic colorectal cancer cell lines. Biochim Biophys Acta Proteins Proteom. 2019;1867(12):140171.
39. Sacco A, Roccaro AM, Ma D, et al. Cancer cell dissemination and homing to the bone marrow in a Zebrafish model. Cancer Res. 2016;76(2):463-471.
40. Ogawa K, Lin Q, Li L, et al. Prometastatic secretome trafficking via exosomes initiates pancreatic cancer pulmonary metastasis. Cancer Lett. 2020;481:63-75.
Haematologica | 107 September 2022
2194












































   193   194   195   196   197