Page 143 - Haematologica Vol. 107 - September 2022
P. 143

ARTICLE - A mouse model of humanized type 2B VWD
S. Kanaji et al.
help understand other forms of hematologic disorders which involve dysregulated VWF-GPIba interaction, and our mouse model with humanized VWF-GPIb interaction may serve as a useful tool to explore therapeutic strategy.
Disclosures
ZMR is founder, President, and CEO, AZ is Chief Innovation Officer of MERU-VasImmune, Inc. SK and TK have equity in- terest in MERU-VasImmune, Inc. The remaining authors de- clare no competing financial interests.
Contributions
SK designed and performed experiments, analyzed data, and wrote the manuscript; YM performed histologic analy- sis and flow cytometry analysis; HW is a director of Trans- genic Core Facility, Blood Research Institute/Medical College of Wisconsin and helped to design and generate
References
1. Nichols WL, Hultin MB, James AH, et al. von Willebrand disease (VWD): evidence-based diagnosis and management guidelines, the National Heart, Lung, and Blood Institute (NHLBI) Expert Panel report (USA). Haemophilia. 2008;14(2):171-232.
2. Ruggeri ZM, Pareti FI, Mannucci PM, Ciavarella N, Zimmerman TS. Heightened interaction between platelets and factor VIII/von Willebrand factor in a new subtype of von Willebrand's disease. N Engl J Med. 1980;302(19):1047-1051.
3. Ruggeri ZM, Lombardi R, Gatti L, Bader R, Valsecchi C, Zimmerman TS. Type IIB von Willebrand's disease: differential clearance of endogenous versus transfused large multimer von Willebrand factor. Blood. 1982;60(6):1453-1456.
4. Rayes J, Hommais A, Legendre P, et al. Effect of von Willebrand disease type 2B and type 2M mutations on the susceptibility of von Willebrand factor to ADAMTS-13. J Thromb Haemost. 2007;5(2):321-328.
5. Federici AB, Mannucci PM, Castaman G, et al. Clinical and molecular predictors of thrombocytopenia and risk of bleeding in patients with von Willebrand disease type 2B: a cohort study of 67 patients. Blood. 2009;113(3):526-534.
6. Nurden P, Debili N, Vainchenker W, et al. Impaired megakaryocytopoiesis in type 2B von Willebrand disease with severe thrombocytopenia. Blood. 2006;108(8):2587-2595.
7. Nurden P, Gobbi G, Nurden A, et al. Abnormal VWF modifies megakaryocytopoiesis: studies of platelets and megakaryocyte cultures from patients with von Willebrand disease type 2B. Blood. 2010;115(13):2649-2656.
8. Chen J, Tan K, Zhou H, et al. Modifying murine von Willebrand factor A1 domain for in vivo assessment of human platelet therapies. Nat Biotechnol 2008;26(1):114-119.
9. Navarrete AM, Casari C, Legendre P, et al. A murine model to characterize the antithrombotic effect of molecules targeting human von Willebrand factor. Blood. 2012;120(13):2723-2732.
10. Rayes J, Hollestelle MJ, Legendre P, et al. Mutation and ADAMTS13-dependent modulation of disease severity in a mouse model for von Willebrand disease type 2B. Blood. 2010;115(23):4870-4877.
11. Golder M, Pruss CM, Hegadorn C, et al. Mutation-specific hemostatic variability in mice expressing common type 2B von
p.V1316M knockin mouse; AZ provided key reagents; RRM and ZMR supervised the study and reviewed the manu- script; TK designed, directed the study, analyzed data, and co-wrote the manuscript.
Funding
This work was supported by National Institutes of Health grants HL-56027 and HL-44612 (RRM), HL-135290 (ZMR), and HL-129011 (TK); by fellowships and additional financial support from MERU Foundation (Italy) to YM, SK, and TK; and by the National Foundation for Cancer Research (SK and TK).
Data-sharing statement
Further details of the data generated or analyzed in the current study are available from the corresponding author upon request.
Willebrand disease substitutions. Blood.
2010;115(23):4862-4869.
12. Adam F, Casari C, Prevost N, et al. A genetically-engineered von
Willebrand disease type 2B mouse model displays defects in
hemostasis and inflammation. Sci Rep. 2016;6:26306. 13. Kanaji S, Orje JN, Kanaji T, et al. Humanized GPIbα-von
Willebrand factor interaction in the mouse. Blood Adv.
2018;2(19):2522-2532.
14. Celikel R, Varughese KI, Madhusudan, Yoshioka A, Ware J,
Ruggeri ZM. Crystal structure of the von Willebrand factor A1 domain in complex with the function blocking NMC-4 Fab. Nat Struct Biol. 1998;5(3):189-194.
15. Kanaji S, Kuether EL, Fahs SA, et al. Correction of murine Bernard-Soulier syndrome by lentivirus-mediated gene therapy. Mol Ther. 2012;20(3):625-632.
16. Kanaji S, Fahs SA, Shi Q, Haberichter SL, Montgomery RR. Contribution of platelet versus endothelial VWF to platelet adhesion and hemostasis. J Thromb Haemost. 2012;10(8):1646-1652.
17. Yokota N, Zarpellon A, Chakrabarty S, et al. Contributions of thrombin targets to tissue factor-dependent metastasis in hyperthrombotic mice. J Thromb Haemost. 2014;12(1):71-81.
18. Ware J, Russell S, Ruggeri ZM. Generation and rescue of a murine model of platelet dysfunction: the Bernard-Soulier syndrome. Proc Natl Acad Sci U S A. 2000;97(6):2803-2808.
19. Gardiner EE. Proteolytic processing of platelet receptors. Res Pract Thromb Haemost. 2018;2(2):240-250.
20. Artemenko EO, Yakimenko AO, Pichugin AV, Ataullakhanov FI, Panteleev MA. Calpain-controlled detachment of major glycoproteins from the cytoskeleton regulates adhesive properties of activated phosphatidylserine-positive platelets. Biochem J. 2016;473(4):435-448.
21. Kanaji T, Kanaji S, Montgomery RR, Patel SB, Newman PJ. Platelet hyperreactivity explains the bleeding abnormality and macrothrombocytopenia in a murine model of sitosterolemia. Blood. 2013;122(15):2732-2742.
22. Casari C, Berrou E, Lebret M, et al. von Willebrand factor mutation promotes thrombocytopathy by inhibiting integrin alphaIIbbeta3. J Clin Invest. 2013;123(12):5071-5081.
 Haematologica | 107 September 2022
2142
























































   141   142   143   144   145