Page 163 - Haematologica May 2022
P. 163
Acquired ibrutinib resistance in WM
open-label substudy of the phase 3 iNNOVATETM Trial. Blood. 2020; 136(Suppl 1):S38-39.
16. Tam CS, Opat S, D'Sa S, et al. A random- ized phase 3 trial of zanubrutinib vs ibruti- nib in symptomatic Waldenström macroglobulinemia: the ASPEN study. Blood. 2020;136(18):2038-2050.
17. Xu L, Tsakmaklis N, Yang G, et al. Acquired mutations associated with ibrutinib resist- ance in Waldenström macroglobulinemia. Blood. 2017;129(18):2519-2525.
18. Chen JG, Liu X, Munshi M, et al. BTKCys481Ser drives ibrutinib resistance via ERK1/2 and protects BTKwild-type MYD88-mutated cells by a paracrine mech- anism. Blood. 2018;131(18):2047-2059.
19. Jiménez C, Chan GG, Xu L, et al. Genomic evolution of ibrutinib-resistant clones in Waldenström macroglobulinaemia. Br J Haematol. 2020;189(6):1165-1170.
20. Gustine JN, Meid K, Dubeau T, et al. Ibrutinib discontinuation in Waldenström macroglobulinemia: etiologies, outcomes, and IgM rebound. Am J Hematol. 2018; 93(4):511-517.
21. Abeykoon JP, Zanwar S, Ansell SM, et al. Ibrutinib monotherapy outside of clinical trial setting in Waldenström macroglobuli- naemia: practice patterns, toxicities and outcomes. Br J Haematol. 2020;188(3):394- 403.
22.Owen RG, Kyle RA, Stone MJ, et al. Response assessment in Waldenström macroglobulinaemia: update from the VIth International Workshop. Br J Haematol. 2013;160(2):171-176.
23. Palladini G, Dispenzieri A, Gertz MA, et al. New criteria for response to treatment in immunoglobulin light chain amyloidosis based on free light chain measurement and cardiac biomarkers: impact on survival out- comes. J Clin Oncol. 2012;30(36):4541- 4549.
24. Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano Classification. J Clin Oncol. 2014; 32(27):3059-3067.
25. Xu L, Hunter ZR, Yang G, et al. MYD88 L265P in Waldenström macroglobulinemia, immunoglobulin M monoclonal gammopa- thy, and other B-cell lymphoproliferative disorders using conventional and quantita- tive allele-specific polymerase chain reac- tion. Blood. 2013;121(11):2051-2058.
26. Kluk MJ, Lindsley RC, Aster JC, et al. Validation and implementation of a custom next-generation sequencing clinical assay for hematologic malignancies. J Mol Diagn. 2016;18(4):507-515.
27. Treon SP, Ioakimidis L, Soumerai JD, et al. Primary therapy of Waldenström macroglobulinemia with bortezomib, dex- amethasone, and rituximab: WMCTG clin- ical trial 05-180. J Clin Oncol. 2009; 27(23):3830-3835.
28. Dimopoulos MA, García-Sanz R, Gavriatopoulou M, et al. Primary therapy of Waldenstrom macroglobulinemia (WM) with weekly bortezomib, low-dose dexam- ethasone, and rituximab (BDR): long-term results of a phase 2 study of the European Myeloma Network (EMN). Blood. 2013; 122(19):3276-3282.
29. Rummel MJ, Niederle N, Maschmeyer G, et al. Bendamustine plus rituximab versus CHOP plus rituximab as first-line treat- ment for patients with indolent and man- tle-cell lymphomas: an open-label, multi-
centre, randomised, phase 3 non-inferiority
trial. Lancet. 2013;381(9873):1203-1210. 30.Castillo JJ, Gustine JN, Meid K, et al. Response and survival for primary therapy combination regimens and maintenance rituximab in Waldenström macroglobuli-
naemia. Br J Haematol. 2018;181(1):77-85. 31. Castillo JJ, Gustine JN, Meid K, Dubeau T, Severns P, Treon SP. Ibrutinib withdrawal symptoms in patients with Waldenström macroglobulinemia. Haematologica. 2018;
103(7):e307-e310.
32. Castillo JJ, Gustine JN, Meid K, et al. Impact
of ibrutinib dose intensity on patient out- comes in previously treated Waldenström macroglobulinemia. Haematologica. 2018; 103(10):e466-e468.
33. Hodge LS, Ziesmer SC, Yang Z-Z, Secreto FJ, Novak AJ, Ansell SM. Constitutive acti- vation of STAT5A and STAT5B regulates IgM secretion in Waldenstrom's macroglobulinemia. Blood. 2014; 123(7): 1055-1058.
34. Mahajan S, Vassilev A, Sun N, Ozer Z, Mao C, Uckun FM. Transcription factor STAT5A is a substrate of Bruton's tyrosine kinase in B cells. J Biol Chem. 2001;276(33):31216- 31228.
35. Maddocks KJ, Ruppert AS, Lozanski G, et al. Etiology of ibrutinib therapy discontinu- ation and outcomes in patients with chron- ic lymphocytic leukemia. JAMA Oncol. 2015;1(1):80-87.
36. Hampel PJ, Ding W, Call TG, et al. Rapid disease progression following discontinua- tion of ibrutinib in patients with chronic lymphocytic leukemia treated in routine clinical practice. Leuk Lymphoma. 2019; 60(11):2712-2719.
37. Treon SP. How I treat Waldenström macroglobulinemia. Blood. 2015; 126(6): 721-732.
38. Gustine JN, Meid K, Dubeau T, et al. Serum IgM level as predictor of symptomatic hyperviscosity in patients with Waldenström macroglobulinaemia. Br J Haematol. 2017;177(5):717-725.
39. Treon SP, Branagan AR, Hunter Z, Santos D, Tournhilac O, Anderson KC. Paradoxical increases in serum IgM and vis- cosity levels following rituximab in Waldenstrom's macroglobulinemia. Ann Oncoly. 2004;15(10):1481-1483.
40. Ghobrial IM, Fonseca R, Greipp PR, et al. Initial immunoglobulin M ‘flare’ after ritux- imab therapy in patients diagnosed with Waldenstrom macroglobulinemia. Cancer. 2004;101(11):2593-2598.
41. Hampel PJ, Call TG, Ding W, et al. Addition of venetoclax at time of progres- sion in ibrutinib-treated patients with chronic lymphocytic leukemia: Combination therapy to prevent ibrutinib flare. Am J Hematol. 2020;95(3):E57-e60.
42. Castillo JJ, Advani RH, Branagan AR, et al. Consensus treatment recommendations from the tenth International Workshop for Waldenstrom Macroglobulinaemia. Lancet Haematol. 2020;7(11):e827-e837.
43.Castillo J, Allan J, Siddiqi T, et al. Multicenter prospective phase II study of venetoclax in patients with previously treated Waldenstrom macroglobulinemia. Clin Lymphoma Myeloma Leuk. 2019;19(10, Supplement):e39-e40.
44. Jones JA, Mato AR, Wierda WG, et al. Venetoclax for chronic lymphocytic leukaemia progressing after ibrutinib: an interim analysis of a multicentre, open- label, phase 2 trial. Lancet Oncol. 2018; 19(1):65-75.
45.
46.
47.
48.
49.
50.
51.
Castillo JJ, Meid K, Gustine JN, et al. Prospective clinical trial of ixazomib, dex- amethasone, and rituximab as primary therapy in Waldenström macroglobuline- mia. Clin Cancer Res. 2018;24(14):3247- 3252.
Castillo JJ, Meid K, Flynn CA, et al. Ixazomib, dexamethasone, and rituximab in treatment-naive patients with Waldenström macroglobulinemia: long- term follow-up. Blood Adv. 2020; 4(16):3952-3959.
Kersten MJ, Minnema MC, Vos JM, et al. Ixazomib, rituximab and dexamethasone (IRD) in patients with relapsed or progres- sive Waldenstrom's macroblobulinemia: results of the prospective phase I/II HOVON 124/Ecwm-R2 trial. Blood. 2019;134(Suppl 1):S344.
Tomowiak C, Desseaux K, Poulain S, et al. Open label non-randomized phase II study exploring «chemo-free » treatment associa- tion with idelalisib + obinutuzumab in patients with relapsed/refractory (R/R) Waldenstrom's macroglobulinemia (MW), a Filo trial: results of the intermediary analysis of the induction phase. Blood. 2019;134(Suppl 1):S346.
Castillo JJ, Gustine JN, Meid K, et al. Response and survival outcomes to ibruti- nib monotherapy for patients with Waldenström macroglobulinemia on and off clinical trials. Hemasphere. 2020; 4(3):e363.
Treon SP, Cao Y, Xu L, Yang G, Liu X, Hunter ZR. Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenström macroglobulinemia. Blood. 2014;123(18):2791-2796.
Castillo JJ, Xu L, Gustine JN, et al. CXCR4 mutation subtypes impact response and survival outcomes in patients with Waldenström macroglobulinaemia treated with ibrutinib. Br J Haematol. 2019; 187(3):356-363
52.Gustine JN, Xu L, Tsakmaklis N, et al. CXCR4S338X clonality is an important determinant of ibrutinib outcomes in patients with Waldenström macroglobu- linemia. Blood Adv. 2019;3(19):2800-2803.
53. Buske C, Tedeschi A, Trotman J, et al. Ibrutinib treatment in Waldenström’s macroglobulinemia: follow-up efficacy and safety from the iNNOVATE study. Blood. 2018;132(Supplement 1):149.
54. Dimopoulos MA, Tedeschi A, Trotman J, et al. Phase 3 trial of ibrutinib plus rituximab in Waldenström’s macroglobulinemia. N Engl J Med. 2018;378(25):2399-2410.
55. Buske C, Tedeschi A, Trotman J, et al. Five- year follow-up of Ibrutinib plus rituximab vs. placebo plus rituximab for Waldenstrom's macroglobulinemia: final analysis from the randomized Phase 3 iNNOVATETM Study. Blood. 2020; 136(Supplement 1):24-26.
56. Shinohara H, Inoue A, Toyama-Sorimachi N, et al. Dok-1 and Dok-2 are negative reg- ulators of lipopolysaccharide-induced sig- naling. J Exp Med. 2005;201(3):333-339.
57. Poulain S, Roumier C, Bertrand E, et al. TP53 mutation and its prognostic significance in Waldenstrom's macroglobulinemia. Clin Cancer Res. 2017;23(20):6325-6335.
58. Gustine JN, Tsakmaklis N, Demos MG, et al. TP53 mutations are associated with mutated MYD88 and CXCR4, and confer an adverse outcome in Waldenström macroglobulinaemia. Br J Haematol. 2019; 184(2):242-245.
haematologica | 2022; 107(5)
1171