Page 98 - 2022_03-Haematologica-web
P. 98

J.T. Weinreb et al.
Biol. 2011;104:429-451.
13. Kettleborough RN, Busch-Nentwich EM,
Harvey SA, et al. A systematic genome-wide analysis of zebrafish protein-coding gene function. Nature. 2013;496(7446):494-497.
14.Traver D, Paw BH, Poss KD, et al. Transplantation and in vivo imaging of mul- tilineage engraftment in zebrafish bloodless mutants. Nat Immunol. 2003;4(12):1238- 1246.
15. De La Garza A, Cameron RC, Nik S, Payne SG, Bowman TV. Spliceosomal component Sf3b1 is essential for hematopoietic differen- tiation in zebrafish. Exp Hematol. 2016;44 (9):826-837.
16. Thisse C, Thisse B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc. 2008;3(1):59-69.
17. Brownlie A, Hersey C, Oates AC, et al. Characterization of embryonic globin genes of the zebrafish. Dev Biol. 2003;255(1):48- 61.
18. Liao EC, Paw BH, Oates AC, et al. SCL/Tal- 1 transcription factor acts downstream of cloche to specify hematopoietic and vascu- lar progenitors in zebrafish. Genes Dev. 1998;12(5):621-626.
19. Detrich HW 3rd, Kieran MW, Chan FY, et al. Intraembryonic hematopoietic cell migra- tion during vertebrate development. Proc Natl Acad Sci U S A. 1995;92(23):10713- 10717.
20. Dobrzycki T, Krecsmarik M, Bonkhofer F,
Patient R, Monteiro R. An optimised pipeline for parallel image-based quantifica- tion of gene expression and genotyping after in situ hybridisation. Biol Open. 2018;7(4):bio031096.
21. Lieschke GJ, Oates AC, Crowhurst MO, Ward AC, Layton JE. Morphologic and func- tional characterization of granulocytes and macrophages in embryonic and adult zebrafish. Blood. 2001;98(10):3087-3096.
22. Sorrells S, Nik S, Casey M, et al. Spliceosomal components protect embryon- ic neurons from R-loop-mediated DNA damage and apoptosis. Dis Model Mech. 2018;11(2):dmm031583.
23. Carroll KJ, North TE. Oceans of opportuni- ty: exploring vertebrate hematopoiesis in zebrafish. Exp Hematol. 2014;42(8):684- 696.
24. Clements WK, Traver D. Signalling path- ways that control vertebrate haematopoietic stem cell specification. Nat Rev Immunol. 2013;13(5):336-348.
25. Lyons SE, Lawson ND, Lei L, et al. A non- sense mutation in zebrafish gata1 causes the bloodless phenotype in vlad tepes. Proc Natl Acad Sci U S A. 2002;99(8):5454-5459.
26. Paffett-Lugassy NN, Zon LI. Analysis of hematopoietic development in the zebrafish. Methods Mol Med. 2005;105: 171-198.
27.Bertrand JY, Kim AD, Violette EP, et al. Definitive hematopoiesis initiates through a
committed erythromyeloid progenitor in the zebrafish embryo. Development. 2007;134(23):4147-4156.
28.Ganis JJ, Hsia N, Trompouki E, et al. Zebrafish globin switching occurs in two developmental stages and is controlled by the LCR. Dev Biol. 2012;366(2):185-194. Liberzon A, Birger C, Thorvaldsdottir H, et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1(6):417-425.
29.
30.
Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowl- edge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545- 15550.
31. Orth JD, Loewer A, Lahav G, Mitchison TJ. Prolonged mitotic arrest triggers partial acti- vation of apoptosis, resulting in DNA dam- age and p53 induction. Mol Biol Cell. 2012;23(4):567-576.
32. Cimprich KA, Cortez D. ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol. 2008;9(8):616-627.
33.Yoshida K, Sanada M, Shiraishi Y, et al. Frequent pathway mutations of splicing machinery in myelodysplasia Nature. 2011;478(7367):64-69.
34. Haferlach T, Nagata Y, Grossmann V, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28(2):241-247.
654
haematologica | 2022; 107(3)


































































































   96   97   98   99   100