Page 35 - 2022_03-Haematologica-web
P. 35
RAS pathway alterations in pediatric AML
TTaga and SA provided patient samples and data. All authors critically reviewed and revised the manuscript.
Acknowledgements
The authors thank Yuki Hoshino for her valuable assistance in performing the experiments. The authors would like to thank Enago(www.enago.jp)fortheEnglishlanguagereview.
Funding
This work was supported by a Grant-in-Aid for Scientific
Research on Innovative Areas from the Ministry of Health, Labor and Welfare of Japan (15H05909), a grant for project for development of innovative research on cancer therapeutics (P- DIRECT) from the Japanese Agency for Medical Research and Development (AMED; JP16ck0106064, JP 19ck0106329), the Japanese Society for the Promotion of Science (KAKENHI grants 17K10130, 18H06234, 19K21333, 20K08744), a research grant from the Japanese Society of Hematology, and the Kawano Masanori Memorial Public Interest Incorporated Foundation for Promotion of Pediatrics.
References
1. Bolouri H, Farrar JE, Triche T Jr, et al. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent struc- tural alterations and age-specific mutation- al interactions. Nat Med. 2018;24(1):103- 112.
2. Fröhling S, Scholl C, Gilliland DG, Levine RL. Genetics of myeloid malignancies: Pathogenetic and clinical implications. J Clin Oncol. 2005;23(26):6285-6295.
3. Eisfeld AK, Kohlschmidt J, Mrózek K, et al. NF1 mutations are recurrent in adult acute myeloid leukemia and confer poor out- come. Leukemia. 2018;32(12):2536-2545.
4. Alfayez M, Issa GC, Patel KP, et al. The clin- ical impact of PTPN11 mutations in adults with acute myeloid leukemia. Leukemia. 2021;35(3):691-700.
5. Murakami N, Okuno Y, Yoshida K, et al. Integrated molecular profiling of juvenile myelomonocytic leukemia. Blood. 2018; 131(14):1576-1586.
6. Tartaglia M, Martinelli S, Iavarone I, et al. Somatic PTPN11 mutations in childhood acute myeloid leukaemia. Br J Haematol. 2005;129(3):333-339.
7. Loh ML, Reynolds MG, Vattikuti S, et al. PTPN11 mutations in pediatric patients with acute myeloid leukemia: results from the Children's Cancer Group. Leukemia. 2004;18(11):1831-1834.
8. Meshinchi S, Stirewalt DL, Alonzo TA, et al. Activating mutations of RTK/ras signal transduction pathway in pediatric acute myeloid leukemia. Blood. 2003;102(4): 1474-1479.
9. Sano H, Shimada A, Taki T, et al. RAS mutations are frequent in FAB type M4 and M5 of acute myeloid leukemia, and related to late relapse: a study of the Japanese Childhood AML Cooperative Study Group. Int J Hematol. 2012;95(5):509-515.
10. Coenen EA, Driessen EM, Zwaan CM, et al. CBL mutations do not frequently occur in paediatric acute myeloid leukaemia. Br J Haematol. 2012;159(5):577-584.
11. Balgobind BV, Van Vlierberghe P, van den Ouweland AM, et al. Leukemia-associated NF1 inactivation in patients with pediatric T-ALL and AML lacking evidence for neu- rofibromatosis. Blood. 2008;111(8):4322- 4328.
12. Sargin B, Choudhary C, Crosetto N, et al. Flt3-dependent transformation by inacti- vating c-Cbl mutations in AML. Blood. 2007;110(3):1004-1012.
13. Abbas S, Rotmans G, Löwenberg B, Valk PJ. Exon 8 splice site mutations in the gene encoding the E3-ligase CBL are associated with core binding factor acute myeloid leukemias. Haematologica. 2008;93(10): 1595-1597
14.Parkin B, Ouillette P, Wang Y, et al. NF1
inactivation in adult acute myelogenous leukemia. Clin Cancer Res. 2010;16(16): 4135-4137.
15. Boudry-Labis E, Roche-Lestienne C, Nibourel O, et al. Neurofibromatosis-1 gene deletions and mutations in de novo adult acute myeloid leukemia. Am J Hematol. 2013;88(4):306-311.
16. Haferlach C, Grossmann V, Kohlmann A, et al. Deletion of the tumor-suppressor gene NF1 occurs in 5% of myeloid malignancies and is accompanied by a mutation in the remaining allele in half of the cases. Leukemia. 2012;26(4):834-839.
17. Tartaglia M, Kalidas K, Shaw A, et al. PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. Am J Hum Genet. 2002;70(6):1555-1563.
18. Sanada M, Suzuki T, Shih LY, et al. Gain-of- function of mutated C-CBL tumour sup- pressor in myeloid neoplasms. Nature. 2009;460(7257):904-908.
19. Matsuo H, Yoshida K, Fukumura K, et al. Recurrent CCND3 mutations in MLL- rearranged acute myeloid leukemia. Blood Adv. 2018;2(21):2879-2889.
20.Shimada A, Taki T, Tabuchi K, et al. KIT mutations, and not FLT3 internal tandem duplication, are strongly associated with a poor prognosis in pediatric acute myeloid leukemia with t(8;21): a study of the Japanese Childhood AML Cooperative Study Group. Blood. 2006;107(5):1806-1809.
21. Döhner K, Schlenk RF, Habdank M, et al H. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cyto- genetics: interaction with other gene muta- tions. Blood. 2005;106(12):3740-3746.
22. Mizushima Y, Taki T, Shimada A, et al. Prognostic significance of the BAALC iso- form pattern and CEBPA mutations in pediatric acute myeloid leukemia with normal karyotype: a study by the Japanese Childhood AML Cooperative Study Group. Int J Hematol. 2010;91(5):831-837
23. Sano H, Ohki K, Park MJ, et al. CSF3R and CALR mutations in paediatric myeloid dis- orders and the association of CSF3R muta- tions with translocations, including t(8; 21). Br J Haematol. 2015;170(3):391-397.
24. Sano H, Shimada A, Tabuchi K, et al. WT1 mutation in pediatric patients with acute myeloid leukemia: a report from the Japanese Childhood AML Cooperative Study Group. Int J Hematol. 2013;98(4):437-445
25. Yamato G, Shiba N, Yoshida K, et al. ASXL2 mutations are frequently found in pediatric AML patients with t(8;21)/ RUNX1-RUNX1T1 and associated with a better prognosis. Genes Chromosomes Cancer. 2017;56(5):382-393.
26. Damm F, Chesnais V, Nagata Y, et al.
BCOR and BCORL1 mutations in myelodysplastic syndromes and related disorders. Blood. 2013;122(18):3169-3177.
27.Thol F, Bollin R, Gehlhaar M, et al. Mutations in the cohesin complex in acute myeloid leukemia: clinical and prognostic implications. Blood. 2014;123(6):914-920.
28. Shiba N, Hasegawa D, Park MJ, et al. CBL mutation in chronic myelomonocytic leukemia secondary to familial platelet dis- order with propensity to develop acute myeloid leukemia (FPD/AML). Blood. 2012;119(11):2612-2614.
29. Xu F, Taki T, Yang HW, et al. Tandem dupli- cation of the FLT3 gene is found in acute lymphoblastic leukaemia as well as acute myeloid leukaemia but not in myelodys- plastic syndrome or juvenile chronic myel- ogenous leukaemia in children. Br J Haematol. 1999;105(1):155-162.
30. Shiba N, Ichikawa H, Taki T, et al. NUP98- NSD1 gene fusion and its related gene expression signature are strongly associat- ed with a poor prognosis in pediatric acute myeloid leukemia. Genes Chromosomes Cancer. 2013;52(7):683-693.
31. Kong XT, Ida K, Ichikawa H, et al. Consistent detection of TLS/FUS-ERG chimeric transcripts in acute myeloid leukemia with t(16;21)(p11;q22) and identi- fication of a novel transcript. Blood. 1997;90(3):1192-1199.
32. Balgobind BV, Hollink IH, Reinhardt D, et al. Low frequency of MLL-partial tandem duplications in paediatric acute myeloid leukaemia using MLPA as a novel DNA screenings technique. Eur J Cancer. 2010;46(10):1892-1899.
33. Jo A, Mitani S, Shiba N, et al. High expres- sion of EVI1 and MEL1 is a compelling poor prognostic marker of pediatric AML. Leukemia. 2015;29(5):1076-1083.
34.Yoshizato T, Nannya Y, Atsuta Y, et al. Genetic abnormalities in myelodysplasia and secondary acute myeloid leukemia: impact on outcome of stem cell transplan- tation. Blood. 2017;129(17):2347-2358. Kanda, Y. Investigation of the freely avail- able easy-to-use software 'EZR' for medical statistics. Bone Marrow Transplant. 2013; 48(3):452-458.
35.
36.
37.
38.
39.
Smith KS, Yadav VK, Pei S, et al. SomVarIUS: somatic variant identification from unpaired tissue samples. Bioinformatics. 2016;32(6):808-813. Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209-2221.
Giannakis M, Mu XJ, Shukla SA, Genomic correlates of immune-cell Infiltrates in col- orectal carcinoma. Cell Rep. 2016;15(4): 857- 865.
Tartaglia M, Niemeyer CM, Fragale A, et al. Somatic mutations in PTPN11 in juvenile
haematologica | 2022; 107(3)
591