Page 133 - 2022_03-Haematologica-web
P. 133

ZRSR2 & ZRSR1 co-operate in splicing of U12 introns
References
1.Yoshida K, Sanada M, Shiraishi Y, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478(7367):64-69.
2. Haferlach T, Nagata Y, Grossmann V, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28(2):241-247.
3. Papaemmanuil E, Gerstung M, Malcovati L, et al. Clinical and biological implications of driver mutations in myelodysplastic syn- dromes. Blood. 2013;122(22):3616-3627.
4. Papaemmanuil E, Cazzola M, Boultwood J, et al. Somatic SF3B1 mutation in myelodys- plasia with ring sideroblasts. N Engl J Med. 2011;365(15):1384-1395.
5. Damm F, Kosmider O, Gelsi-Boyer V, et al. Mutations affecting mRNA splicing define distinct clinical phenotypes and correlate with patient outcome in myelodysplastic syndromes. Blood. 2012;119(14):3211-3218.
6. Kim E, Ilagan JO, Liang Y, et al. SRSF2 Mutations contribute to myelodysplasia by mutant-specific effects on exon recognition. Cancer Cell. 2015;27(5):617-630.
7. Komeno Y, Huang YJ, Qiu J, et al. SRSF2 Is Essential for hematopoiesis, and its myelodysplastic syndrome-related muta- tions dysregulate alternative pre-mRNA splicing. Mol Cell Biol. 2015;35(17):3071- 3082.
8. Madan V, Kanojia D, Li J, et al. Aberrant splicing of U12-type introns is the hallmark of ZRSR2 mutant myelodysplastic syn- drome. Nat Commun. 2015;6:6042.
9. Zhang J, Lieu YK, Ali AM, et al. Disease- associated mutation in SRSF2 misregulates splicing by altering RNA-binding affinities. Proc Natl Acad Sci U S A. 2015;112 (34):E4726-4734.
10. Ilagan JO, Ramakrishnan A, Hayes B, et al. U2AF1 mutations alter splice site recogni- tion in hematological malignancies. Genome Res. 2015;25(1):14-26.
11. Okeyo-Owuor T, White BS, Chatrikhi R, et al. U2AF1 mutations alter sequence speci- ficity of pre-mRNA binding and splicing. Leukemia. 2015;29(4):909-917.
12. Shirai CL, Ley JN, White BS, et al. Mutant U2AF1 expression alters hematopoiesis and pre-mRNA splicing in vivo. Cancer Cell. 2015;27(5):631-643.
13. Alsafadi S, Houy A, Battistella A, et al. Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage. Nat Commun. 2016;7:10615.
14.Darman RB, Seiler M, Agrawal AA, et al. Cancer-Associated SF3B1 hotspot mutations induce cryptic 3' splice site selection through use of a different branch point. Cell Rep. 2015;13(5):1033-1045.
15. Mupo A, Seiler M, Sathiaseelan V, et al. Hemopoietic-specific Sf3b1-K700E knock-in mice display the splicing defect seen in human MDS but develop anemia without ring sideroblasts. Leukemia. 2017;31(3):720- 727.
16.Obeng EA, Chappell RJ, Seiler M, et al. Physiologic expression of Sf3b1(K700E) causes impaired erythropoiesis, aberrant splicing, and sensitivity to therapeutic spliceosome modulation. Cancer Cell. 2016;30(3):404-417.
17. Madan V, Li J, Zhou S, et al. Distinct and convergent consequences of splice factor mutations in myelodysplastic syndromes. Am J Hematol. 2020;95(2):133-143.
18. Fei DL, Zhen T, Durham B, et al. Impaired hematopoiesis and leukemia development in mice with a conditional knock-in allele of a mutant splicing factor gene U2af1. Proc Natl Acad Sci U S A. 2018;115(44):E10437- E10446.
19. Kon A, Yamazaki S, Nannya Y, et al. Physiological Srsf2 P95H expression causes impaired hematopoietic stem cell functions and aberrant RNA splicing in mice. Blood. 2018;131(6):621-635.
20. Smeets MF, Tan SY, Xu JJ, et al. Srsf2(P95H) initiates myeloid bias and myelodysplas- tic/myeloproliferative syndrome from hemopoietic stem cells. Blood. 2018;132(6): 608-621.
21.Tronchere H, Wang J, Fu XD. A protein related to splicing factor U2AF35 that inter- acts with U2AF65 and SR proteins in splic- ing of pre-mRNA. Nature. 1997;388(6640): 397-400.
22. Shen H, Zheng X, Luecke S, Green MR. The U2AF35-related protein Urp contacts the 3' splice site to promote U12-type intron splicing and the second step of U2- type intron splicing. Genes Dev. 2010;24 (21):2389-2394.
23.Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15-21.
24. Frankish A, Diekhans M, Ferreira AM, et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 2019;47(D1):D766-D773.
25. Dale RK, Pedersen BS, Quinlan AR. Pybedtools: a flexible Python library for manipulating genomic datasets and annota- tions. Bioinformatics. 2011;27(24):3423- 3424.
26. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic fea- tures. Bioinformatics. 2010;26(6):841-842.
27. Sheth N, Roca X, Hastings ML, Roeder T, Krainer AR, Sachidanandam R. Comprehensive splice-site analysis using comparative genomics. Nucleic Acids Res. 2006;34(14):3955-3967.
28. van Heeringen SJ, Veenstra GJ. GimmeMotifs: a de novo motif prediction pipeline for ChIP-sequencing experiments. Bioinformatics. 2011;27(2):270-271.
29. Geest CR, Coffer PJ. MAPK signaling path- ways in the regulation of hematopoiesis. J Leukoc Biol. 2009;86(2):237-250.
30. Lin CF, Mount SM, Jarmolowski A, Makalowski W. Evolutionary dynamics of U12-type spliceosomal introns. BMC Evol Biol. 2010;10:47.
31. Olthof AM, Hyatt KC, Kanadia RN. Minor intron splicing revisited: identification of new minor intron-containing genes and tis- sue-dependent retention and alternative splicing of minor introns. BMC Genomics. 2019;20(1):686.
32. Cologne A, Benoit-Pilven C, Besson A, et al. New insights into minor splicing-a transcrip- tomic analysis of cells derived from TALS patients. RNA. 2019;25(9):1130-1149.
33. Xu JJ, Smeets MF, Tan SY, Wall M, Purton LE, Walkley CR. Modeling human RNA spliceosome mutations in the mouse: not all mice were created equal. Exp Hematol.
2019;70:10-23.
34. Fleischman RA, Stockton SS, Cogle CR.
Refractory macrocytic anemias in patients with clonal hematopoietic disorders and iso- lated mutations of the spliceosome gene ZRSR2. Leuk Res. 2017;61:104-107.
35. Hatada I, Sugama T, Mukai T. A new imprinted gene cloned by a methylation- sensitive genome scanning method. Nucleic Acids Res. 1993;21(24):5577-5582.
36. Hayashizaki Y, Shibata H, Hirotsune S, et al. Identification of an imprinted U2af binding protein related sequence on mouse chromo- some 11 using the RLGS method. Nat Genet. 1994;6(1):33-40.
37. Hatada I, Kitagawa K, Yamaoka T, et al. Allele-specific methylation and expression of an imprinted U2af1-rs1 (SP2) gene. Nucleic Acids Res. 1995;23(1):36-41.
38.Shibata H, Yoshino K, Sunahara S, et al. Inactive allele-specific methylation and chromatin structure of the imprinted gene U2af1-rs1 on mouse chromosome 11. Genomics. 1996;35(1):248-252.
39. Feil R, Boyano MD, Allen ND, Kelsey G. Parental chromosome-specific chromatin conformation in the imprinted U2af1-rs1 gene in the mouse. J Biol Chem. 1997;272 (33):20893-20900.
40. Nabetani A, Hatada I, Morisaki H, Oshimura M, Mukai T. Mouse U2af1-rs1 is a neomorphic imprinted gene. Mol Cell Biol. 1997;17(2):789-798.
41. Sunahara S, Nakamura K, Nakao K, Gondo Y, Nagata Y, Katsuki M. The oocyte-specific methylated region of the U2afbp-rs/U2af1- rs1 gene is dispensable for its imprinted methylation. Biochem Biophys Res Commun. 2000;268(2):590-595.
42. Horiuchi K, Perez-Cerezales S, Papasaikas P, et al. Impaired spermatogenesis, muscle, and erythrocyte function in U12 intron splicing- defective Zrsr1 mutant mice. Cell Rep. 2018;23(1):143-155.
43. Alen F, Gomez-Redondo I, Rivera P, et al. Sex-dimorphic behavioral alterations and altered neurogenesis in U12 intron splicing- defective Zrsr1 mutant mice. Int J Mol Sci. 2019;20(14):3543.
44. Cargnello M, Roux PP. Activation and func- tion of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011;75(1):50-83.
45.Tamura K, Sudo T, Senftleben U, Dadak AM, Johnson R, Karin M. Requirement for p38alpha in erythropoietin expression: a role for stress kinases in erythropoiesis. Cell. 2000;102(2):221-231.
46. Sabapathy K, Kallunki T, David JP, Graef I, Karin M, Wagner EF. c-Jun NH2-terminal kinase (JNK)1 and JNK2 have similar and stage-dependent roles in regulating T cell apoptosis and proliferation. J Exp Med. 2001;193(3):317-328.
47. Hsu HL, Choy CO, Kasiappan R, et al. MCT-1 oncogene downregulates p53 and destabilizes genome structure in the response to DNA double-strand damage. DNA Repair (Amst). 2007;6(9):1319-1332.
48. Gomez-Redondo I, Ramos-Ibeas P, Pericuesta E, Fernandez-Gonzalez R, Laguna-Barraza R, Gutierrez-Adan A. Minor splicing factors Zrsr1 and Zrsr2 are essential for early embryo development and 2-cell- like conversion. Int J Mol Sci. 2020;21 (11):4115.
haematologica | 2022; 107(3)
689


































































































   131   132   133   134   135