Page 103 - 2022_02-Haematologica-web
P. 103
CD38 CAR-NK cells targeting AML
References
1. Surveillance, Epidemiology, and End Results (SEER) Program (1969-2018). U.S. Population Data with Other Software: (SEER Web site: www.seer.cancer.gov/pop- data), National Cancer Institute, DCCPS, Surveillance Research Program, released December 2019.
2. DiNardo CD, Stein EM, de Botton S, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018;378(25):2386-2398.
3. Stein EM, DiNardo CD, Pollyea DA, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 2017;130(6):722-731.
4. Stone RM, Mandrekar SJ, Sanford BL, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017;377(5):454-464.
5.Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439-448.
6. Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531-2544.
7. Cummins KD, Gill S. Chimeric antigen receptor T-cell therapy for acute myeloid leukemia: how close to reality? Haematologica. 2019;104(7):1302-1308.
8. Kenderian SS, Ruella M, Shestova O, et al. Targeting CLEC12A with chimeric antigen receptor T cells can overcome the chemotherapy refractoriness of leukemia stem cells. Biol Blood Marrow Transplant. 2017;23(3):S247-S248.
9. Petrov JC, Wada M, Pinz KG, et al. Compound CAR T-cells as a double- pronged approach for treating acute myeloid leukemia. Leukemia. 2018;32(6):1317-1326.
10. Naik J, Themeli M, de Jong-Korlaar R, et al. CD38 as a therapeutic target for adult acute myeloid leukemia and T-cell acute lym- phoblastic leukemia. Haematologica. 2019; 104(3):e100-e103.
11. Drent E, Groen RWJ, Noort WA, et al. Pre- clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma. Haematologica. 2016;101(5):616-625.
12. Mihara K, Yanagihara K, Takigahira M, et al. Activated T-cell-mediated immunotherapy with a chimeric receptor against CD38 in B- cell non-Hodgkin lymphoma. J Immunother.
2009;32(7):737-743.
13. Drent E, Themeli M, Poels R, et al. A rational
strategy for reducing on-target off-tumor effects of CD38-chimeric antigen receptors by affinity optimization. Mol Ther. 2017;25(8):1946-1958.
14. Björklund AT, Carlsten M, Sohlberg E, et al. Complete remission with reduction of high- risk clones following haploidentical NK-cell therapy against MDS and AML. Clin Cancer Res. 2018;24(8):1834-1844.
15. Nguyen R, Wu H, Pounds S, et al. A phase II clinical trial of adoptive transfer of hap- loidentical natural killer cells for consolida- tion therapy of pediatric acute myeloid leukemia. J Immunother Cancer. 2019;7 (1):81.
16.Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295(5562):2097- 2100.
17.Liu E, Marin D, Banerjee P, et al. Use of CAR-transduced natural killer cells in CD19- positive lymphoid tumors. N Engl J Med. 2020;382(6):545-553.
18. Wang Y, Zhang Y, Hughes T, et al. Fratricide of NK cells in daratumumab therapy for multiple myeloma overcome by ex vivo- expanded autologous NK cells. Clin Cancer Res. 2018;24(16):4006-4023.
19. Suck G, Branch DR, Smyth MJ, et al. KHYG- 1, a model for the study of enhanced natural killer cell cytotoxicity. Exp Hematol. 2005;33(10):1160-1171.
20. Uruno A, Noguchi N, Matsuda K, et al. All- trans retinoic acid and a novel synthetic retinoid tamibarotene (Am80) differentially regulate CD38 expression in human leukemia HL-60 cells: possible involvement of protein kinase C-δ. J Leukoc Biol. 2011;90(2):235-247.
21. Tang X, Yang L, Li Z, et al. First-in-man clin- ical trial of CAR NK-92 cells: safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia. Am J Cancer Res. 2018;8(6):1083- 1089.
22. Zabaleta A, Tomas J, Simoes C, et al. The mode of action of the anti-CD38 monoclon- al antibody (MAB) isatuximab in elderly acute myeloid leukaemia (AML). Hemasphere. 2020;4(S1):Abstract Book EP467.
23.Krejcik J, Casneuf T, Nijhof IS, et al. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion,
and skews T-cell repertoire in multiple
myeloma. Blood.2016;128(3):384-394.
24. Zhao C, Jia B, Wang M, et al. Multi-dimen- sional analysis identifies an immune signa- ture predicting response to decitabine treat- ment in elderly patients with AML. Br J
Haematol. 2020;188(5):674-684.
25. Farber M, Arnold L, Chen Y, Möllmann M,
Duehrsen U, Hanoun M. Inhibition of CD38 shows anti-leukemic activity in acute myeloid leukemia. Blood. 2018;132(Suppl 1):1456-1456.
26. Mouly E, Planquette C, Rousseau E, Delansorne R. Inecalcitol respectively induces or increases CD38 expression at the surface of CD38- or CD38+ AML cell lines representative of all 9 FAB subtypes except M6. Cancer Res. 2018;78(13 Suppl):1890.
27. Naeimi Kararoudi M, Nagai Y, Elmas E, et al. CD38 deletion of human primary NK cells eliminates daratumumab-induced fratricide and boosts their effector activity. Blood. 2020;136(21):2416-2427.
28. Casneuf T, Xu XS, Adams HC, et al. Effects of daratumumab on natural killer cells and impact on clinical outcomes in relapsed or refractory multiple myeloma. Blood Adv. 2017;1(23):2105-2114.
29. Pomeroy EJ, Hunzeker JT, Kluesner MG, et al. A genetically engineered primary human natural killer cell platform for cancer immunotherapy. Mol Ther. 2019;28(1):52- 63.
30. Kararoudi MN, Dolatshad H, Trikha P, et al. Generation of knock-out primary and expanded human NK cells using Cas9 ribonucleoproteins. J Vis Exp. 2018;2018 (136):58237.
31. Taussig DC, Miraki-Moud F, Anjos-Afonso F, et al. Anti-CD38 antibody-mediated clear- ance of human repopulating cells masks the heterogeneity of leukemia-initiating cells. Blood. 2008;112(3):568-575.
32. Szegezdi E, Reis CR, Sloot AM van der, et al. Targeting AML through DR4 with a novel variant of rhTRAIL. J Cell Mol Med. 2011;15(10):2216-2231.
33. GaoZ,TongC,WangY,ChenD,WuZ, Han W. Blocking CD38-driven fratricide among T cells enables effective antitumor activity by CD38-specific chimeric antigen receptor T cells. J Genet Genomics. 2019;46(8):367-377.
34. Cichocki F, Woan K, Wu C-Y, et al. NK cells lacking CD38 are resistant to oxidative stress-induced death. Blood. 2019;134(Supp 1):3215-3215.
haematologica | 2022; 107(2)
445