Page 93 - 2022_01-Haematologica-web
P. 93
Mechanisms of sorafenib resistance in AML
myeloid leukemia with a FLT3 mutation. N
Engl J Med. 2017;377(5):454-464.
17. Perl AE, Altman JK, Cortes J, et al. Selective inhibition of FLT3 by gilteritinib in relapsed or refractory acute myeloid leukaemia: a multicentre, first-in-human, open-label, phase 1–2 study. Lancet Oncol. 2017;18(8):
1061-1075.
18. McMahon CM, Ferng T, Canaani J, et al.
Clonal selection with Ras pathway activa- tion mediates secondary clinical resistance to selective FLT3 inhibition in acute myeloid leukemia. Cancer Discov. 2019;9(8):1050- 1063.
19. Smith CC, Wang Q, Chin C-S, et al. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature. 2012;485(7397):260-263.
20. Man CH, Fing TK, Ho C, et al. Sorafenib treatment of FLT3-ITD(+) acute myeloid leukemia: favorable initial outcome and mechanisms of subsequent nonresponsive- ness associated with the emergence of a D835 mutation. Blood. 2012;119(22):5133- 5143.
21. Albers C, Leischner H, Verbeek M, et al. The secondary FLT3-ITD F691L mutation induces resistance to AC220 in FLT3-ITD+ AML but retains in vitro sensitivity to PKC412 and Sunitinib. Leukemia. 2013;27 (6):1416-1418.
22. Zhang H, Savage S, Schultz AR, et al. Clinical resistance to crenolanib in acute myeloid leukemia due to diverse molecular mechanisms. Nature Commun. 2019;10(1): 244-257.
23. Bruner JK, Ma HS, Li L, et al. Adaptation to TKI treatment reactivates ERK signaling in tyrosine kinase-driven leukemias and other malignancies. Cancer Res. 2017;77(20):5554- 5563.
24. Yang X, Sexauer A, Levis M. Bone marrow stroma-mediated resistance to FLT3 inhibitors in FLT3-ITD AML is mediated by persistent activation of extracellular regulat- ed kinase. Br J Haematol. 2014;164(1):61-72.
25. Martínez-López J, Linares M, Morales ML, et al. Preclinical evidence that trametinib enhances the response to tyrosine kinase inhibitors in acute myeloid leukemia. Blood. 2016;128(22):1581.
26. Sung PJ, Sugita M, Koblish H, et al. Hematopoietic cytokines mediate resistance to targeted therapy in FLT3-ITD acute myeloid leukemia. Blood Adv. 2019;3(7): 1061-1072.
27. Lindblad O, Cordero E, Puissant A, et al. Aberrant activation of the PI3K/mTOR pathway promotes resistance to sorafenib in AML. Oncogene. 2016;35(39):5119-5131.
28. Wilhelm S, Carter C, Lynch M, et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov. 2006;5(10):835-844.
29. Ravandi F, Alattar ML, Grunwald MR, et al. Phase 2 study of azacytidine plus sorafenib in patients with acute myeloid leukemia and
FLT-3 internal tandem duplication mutation.
Blood. 2013;121(23):4655-4662.
30. Röllig C, Serve H, Huttmann A, et al.
Addition of sorafenib versus placebo to stan- dard therapy in patients aged 60 years or younger with newly diagnosed acute myeloid leukaemia (SORAML): a multicen- tre, phase 2, randomised controlled trial. Lancet Oncol. 2015;16(16):1691-1699.
31. Chen Y-B, Li S, Lane AA, et al. Phase I trial of maintenance sorafenib after allogeneic hematopoietic stem cell transplantation for Fms-like tyrosine kinase 3 internal tandem duplication acute myeloid leukemia. Biol Blood Marrow Transplant. 2014;20(12): 2042-2048.
32. Nechiporuk T, Kurtz SE, Nikolova O, et al. The TP53 apoptotic network is a primary mediator of resistance to BCL2 inhibition in AML cells. Cancer Discov. 2019;9(7):910- 925.
33. Tzelepis K, Koike-Yusa H, De Braekeleer E, et al. A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic tar- gets in acute myeloid leukemia. Cell Rep. 2016; 17(4):1193-1205.
34. Li W, Xu H, Xiao T, et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 2014;15(12):554-566.
35.Steklov M, Pandolfi S, Baietti MF, et al, Mutations in LZTR1 drive human disease by dysregulating RAS ubiquitination. Science. 2018;362(6419):1177-1182.
36. Bigenzahn J, Collu GM, Kartnig F, et al. LZTR1 is a regulator of RAS ubiquitination and signaling. Science. 2018;362(6419):1171- 1177.
37. Dibble CC, Elis W, Menon S, et al. TBC1D7 is a third subunit of the TSC1-TSC2 com- plex upstream of mTORC1. Mol Cell. 2012;47(4):535-546.
38.Shen K, Huang RK, Brignole RG, et al. Architecture of the human GATOR1 and GATOR1–Rag GTPases complexes. Nature. 2018;556(7699):64-69.
39. Carriere A, Romea Y, Acosta-Jacquez JK, et al. ERK1/2 phosphorylate Raptor to pro- mote Ras-dependent activation of mTOR complex 1 (mTORC1). J Biol Chem. 2011;286(1):567-577.
40. Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci. 2011;36 (6):320-328.
41. Ma L, Chen Z, Erdjument-Bromage H, et al. Phosphorylation and functional inactivation of TSC2 by Erk: implications for tuberous sclerosis and cancer pathogenesis. Cell. 2005;121(2):179-193.
42. Ma L, Teruya-Feldstein J, Bonner P, et al. Identification of S664 TSC2 phosphoryla- tion as a marker for extracellular signal-reg- ulated kinase-mediated mTOR activation in tuberous sclerosis and human cancer. Cancer Res. 2007;67(15):7106-7112.
43. Ballif BA, Roux PP, Gerber SA, et al.
Quantitative phosphorylation profiling of the ERK/p90 ribosomal S6 kinase-signaling cassette and its targets, the tuberous sclero- sis tumor suppressors. Proc Natl Acad Sci U S A. 2005;102(3):667-672.
44. Aicher LD, Campbell JS, Yeung RS. Tuberin phosphorylation regulates its interaction with hamartin: two proteins involved in tuberous sclerosis. J Biol Chem. 2001;276 (24):21017-21021.
45. He L, Kulesskiy E, Saarela J, et al. Methods for high-throughput drug combination screening and synergy scoring. Methods Mol Biol. 2018;1711:351-398.
46. Castel P, Cheng A, Cuevas-Navarro A, et al. RIT1 oncoproteins escape LZTR1-mediated proteolysis. Science. 2019; 363(6432):1226- 1230.
47. Abe T, Umeki I, Kanno S-I, et al. LZTR1 facilitates polyubiquitination and degrada- tion of RAS-GTPases. Cell Death Differ. 2020;27(3):1023-1035.
48. Cancer Genome Atlas Research Network. Comprehensive and integrative genomic characterization of hepatocellular carcino- ma. Cell. 2017;169(7):1327-1341.
49. Frattini V, Trifonov, V, Chan JM, et al. The integrated landscape of driver genomic alter- ations in glioblastoma. Nat Genet. 2013;45 (10): 1141-1149.
50. Eisfeld A-K, Kohlschmidt J, Mrozek K, et al. NF1 mutations are recurrent in adult acute myeloid leukemia and confer poor outcome. Leukemia. 2018;32(12):2536-2545.
51. Huang J, Manning BD. The TSC1–TSC2 complex: a molecular switchboard control- ling cell growth. Biochem J. 2008;412(2):179- 190.
52. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274-293.
53. Manning BD, Toker A. AKT/PKB signaling: navigating the network. Cell. 2017;169(3): 381-405.
54. Ho DWH, Chan LK, Chui YT, et al. TSC1/2 mutations define a molecular subset of HCC with aggressive behaviour and treatment implication. Gut. 2017;66(8):1496-1506.
55. Morales ML, Arenas A, Ortiz-Ruiz A, et al. MEK inhibition enhances the response to tyrosine kinase inhibitors in acute myeloid leukemia. Sci Rep. 2019;9(1):18630-18641.
56. Opatz S, Bamopoulus SA, Metzeler KH, et al. The clinical mutatome of core binding factor leukemia. Leukemia. 2020;34(6): 1553-1562.
57. Wang BD, Lee NH. Aberrant RNA splicing in cancer and drug resistance. Cancers (Basel). 2018;10(11):458-482.
58. Desterro J, Bak-Gordon P, Carmo-Fonseca M. Targeting mRNA processing as an anti- cancer strategy. Nat Rev Drug Discov. 2020;19(2):112-129.
59. Di C, Syafrizayanti, Zhang Q, et al. Function, clinical application, and strategies of pre-mRNA splicing in cancer. Cell Death Differ. 2019;26(7):1181-1194.
haematologica | 2022; 107(1)
85