Page 218 - 2022_01-Haematologica-web
P. 218
R.J. Leeman-Neill et al.
2017;56(3):221-230.
7. Liu Z, Filip I, Gomez K, et al. Genomic char-
acterization of HIV-associated plasmablastic lymphoma identifies pervasive mutations in the JAK–STAT pathway. Blood Cancer Discov. 2020;1(1):112-125.
8. Gravelle P, Pericart S, Tosolini M, et al. EBV infection determines the immune hall- marks of plasmablastic lymphoma. Oncoimmunology. 2018;7(10):e1486950.
9. Chapman J, Gentles AJ, Sujoy V, et al. Gene expression analysis of plasmablastic lym- phoma identifies downregulation of B-cell receptor signaling and additional unique transcriptional programs. Leukemia. 2015;29 (11):2270-2273.
10. Ambrosio MR, Mundo L, Gazaneo S, et al. MicroRNAs sequencing unveils distinct molecular subgroups of plasmablastic lym- phoma. Oncotarget. 2017;8(64):107356- 107373.
11. Garcia-Reyero J, Martinez Magunacelaya N, Gonzalez de Villambrosia S, et al. Genetic lesions in MYC and STAT3 drive oncogenic transcription factor overexpression in plas- mablastic lymphoma. Haematologica. 2021;106(4):1120-1128.
12. Loghavi S, Alayed K, Aladily TN, et al. Stage, age, and EBV status impact outcomes of plas- mablastic lymphoma patients: a clinico- pathologic analysis of 61 patients. J Hematol Oncol. 2015;8:65.
13. Dierickx D, Tousseyn T, Sagaert X, et al. Single-center analysis of biopsy-confirmed posttransplant lymphoproliferative disorder: incidence, clinicopathological characteristics andprognosticfactors.LeukLymphoma. 2013;54(11):2433-2440.
14.Zimmermann H, Oschlies I, Fink S, et al. Plasmablastic posttransplant lymphoma: cytogenetic aberrations and lack of Epstein- Barr virus association linked with poor out- come in the prospective German posttrans- plant lymphoproliferative disorder registry. Transplantation. 2012;93(5):543-550.
15. van Dongen JJ, Langerak AW, Bruggemann M, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoprolifera- tions: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2003;17(12):2257-2317.
16. Pang J, Gindin T, Mansukhani M, Fernandes H, Hsiao S. Microsatellite instability detec- tion using a large next-generation sequencing cancer panel across diverse tumour types. J Clin Pathol. 2020;73(2):83-89.
17. Montes-Moreno S, Martinez-Magunacelaya N, Zecchini-Barrese T, et al. Plasmablastic lymphoma phenotype is determined by genetic alterations in MYC and PRDM1. Mod Pathol. 2017;30(1):85-94.
18. Sarosiek KA, Malumbres R, Nechushtan H, Gentles AJ, Avisar E, Lossos IS. Novel IL-21 signaling pathway up-regulates c-Myc and induces apoptosis of diffuse large B-cell lym- phomas. Blood. 2010;115(3):570-580.
19.Valera A, Balague O, Colomo L, et al. IG/MYC rearrangements are the main cyto- genetic alteration in plasmablastic lym- phomas. Am J Surg Pathol. 2010;34(11): 1686-1694.
20. Zhang J, Dominguez-Sola D, Hussein S, et al. Disruption of KMT2D perturbs germinal center B cell development and promotes lymphomagenesis. Nat Med. 2015;21(10):1190-1198.
21.Menter T, Juskevicius D, Alikian M, et al. Mutational landscape of B-cell post-trans-
plant lymphoproliferative disorders. Br J
Haematol. 2017;178(1):48-56.
22. Chapman MA, Lawrence MS, Keats JJ, et al.
Initial genome sequencing and analysis of multiple myeloma. Nature. 2011;471(7339): 467-472.
23. Maura F, Bolli N, Angelopoulos N, et al. Genomic landscape and chronological recon- struction of driver events in multiple myelo- ma. Nat Commun. 2019;10(1):3835.
24. Chapuy B, Stewart C, Dunford AJ, et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct path- ogenic mechanisms and outcomes. Nat Med. 2018;24(5):679-690.
25. Reddy A, Zhang J, Davis NS, et al. Genetic and functional drivers of diffuse large B cell lymphoma. Cell. 2017;171(2):481-494.
26. Schmitz R, Wright GW, Huang DW, et al. Genetics and pathogenesis of diffuse large B- cell lymphoma. N Engl J Med. 2018;378 (15):1396-1407.
27. Rossi D, Gaidano G, Gloghini A, et al. Frequent aberrant promoter hypermethyla- tion of O6-methylguanine-DNA methyl- transferase and death-associated protein kinase genes in immunodeficiency-related lymphomas. Br J Haematol. 2003;123(3): 475-478.
28. Walker BA, Mavrommatis K, Wardell CP, et al. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood. 2018;132(6):587-597.
29.Kataoka K, Miyoshi H, Sakata S, et al. Frequent structural variations involving pro- grammed death ligands in Epstein-Barr virus- associated lymphomas. Leukemia. 2019;33(7):1687-1699.
30. Courville EL, Yohe S, Chou D, et al. EBV- negative monomorphic B-cell post-trans- plant lymphoproliferative disorders are pathologically distinct from EBV-positive cases and frequently contain TP53 muta- tions. Mod Pathol. 2016;29(10):1200-1211.
31. Simonitsch-Klupp I, Hauser I, Ott G, et al. Diffuse large B-cell lymphomas with plas- mablastic/plasmacytoid features are associ- ated with TP53 deletions and poor clinical outcome. Leukemia. 2004;18(1):146-155.
32.Lode L, Eveillard M, Trichet V, et al. Mutations in TP53 are exclusively associated with del(17p) in multiple myeloma. Haematologica. 2010;95(11):1973-1976.
33. Velangi MR, Matheson EC, Morgan GJ, et al. DNA mismatch repair pathway defects in the pathogenesis and evolution of myeloma. Carcinogenesis. 2004;25(10):1795-1803.
34. Capello D, Rossi D, Gaidano G. Post-trans- plant lymphoproliferative disorders: molecu- lar basis of disease histogenesis and patho- genesis. Hematol Oncol. 2005;23(2):61-67.
35.Lohr JG, Stojanov P, Carter SL, et al. Widespread genetic heterogeneity in multi- ple myeloma: implications for targeted ther- apy. Cancer Cell. 2014;25(1):91-101.
36. Knowles DM, Cesarman E, Chadburn A, et al. Correlative morphologic and molecular genetic analysis demonstrates three distinct categories of posttransplantation lympho- proliferative disorders. Blood. 1995;85(2): 552-565.
37. Gru AA, Williams E, Junkins-Hopkins JM. An immune suppression-associated EBV- positive anaplastic large cell lymphoma with a BRAF V600E mutation. Am J Surg Pathol. 2019;43(1):140-146.
38.GuY,MasieroM,BanhamAH.Notchsig- naling: its roles and therapeutic potential in hematological malignancies. Oncotarget. 2016;7(20):29804-29823.
39. Kempkes B, Ling PD. EBNA2 and its coacti- vator EBNA-LP. Curr Top Microbiol Immunol. 2015;391:35-59.
40. Colombo M, Galletti S, Garavelli S, et al. Notch signaling deregulation in multiple myeloma: a rational molecular target. Oncotarget. 2015;6(29):26826-26840.
41.Vainchenker W, Constantinescu SN. JAK/STAT signaling in hematological malig- nancies. Oncogene. 2013;32(21):2601-2613.
42. Koskela HL, Eldfors S, Ellonen P, et al. Somatic STAT3 mutations in large granular lymphocytic leukemia. N Engl J Med. 2012;366(20):1905-1913.
43. Yildiz M, Li H, Bernard D, et al. Activating STAT6 mutations in follicular lymphoma. Blood. 2015;125(4):668-679.
44. Liau NPD, Laktyushin A, Lucet IS, et al. The molecular basis of JAK/STAT inhibition by SOCS1. Nat Commun. 2018;9(1):1558.
45.Capello D, Gloghini A, Baldanzi G, et al. Alterations of negative regulators of cytokine signalling in immunodeficiency-related non- Hodgkin lymphoma. Hematol Oncol. 2013;31(1):22-28.
46. Landowski TH, Qu N, Buyuksal I, Painter JS, Dalton WS. Mutations in the Fas antigen in patients with multiple myeloma. Blood. 1997;90(11):4266-4270.
47. Challa-Malladi M, Lieu YK, Califano O, et al. Combined genetic inactivation of b2- microglobulin and CD58 reveals frequent escape from immune recognition in diffuse large B cell lymphoma. Cancer Cell. 2011;20(6):728-740.
48. Vakiani E, Basso K, Klein U, et al. Genetic andphenotypicanalysisofB-cellpost-trans- plant lymphoproliferative disorders provides insights into disease biology. Hematol Oncol. 2008;26(4):199-211.
49. Rinaldi A, Capello D, Scandurra M, et al. Single nucleotide polymorphism-arrays pro- vide new insights in the pathogenesis of post-transplant diffuse large B-cell lym- phoma. Br J Haematol. 2010;149(4):569-577.
50. Rinaldi A, Kwee I, Poretti G, et al. Comparative genome-wide profiling of post- transplant lymphoproliferative disorders and diffuse large B-cell lymphomas. Br J Haematol. 2006;134(1):27-36.
51. Colomo L, Loong F, Rives S, et al. Diffuse large B-cell lymphomas with plasmablastic differentiation represent a heterogeneous group of disease entities. Am J Surg Pathol. 2004;28(6):736-747.
52. Laurent C, Fabiani B, Do C, et al. Immune- checkpoint expression in Epstein-Barr virus positive and negative plasmablastic lym- phoma: a clinical and pathological study in 82 patients. Haematologica. 2016;101(8): 976-984.
53. Montes-Moreno S, Gonzalez-Medina AR, Rodriguez-Pinilla SM, et al. Aggressive large B-cell lymphoma with plasma cell differenti- ation: immunohistochemical characteriza- tion of plasmablastic lymphoma and diffuse large B-cell lymphoma with partial plas- mablastic phenotype. Haematologica. 2010;95(8):1342-1349.
54.
Green MR, Rodig S, Juszczynski P, et al. Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disor- ders: implications for targeted therapy. Clin Cancer Res. 2012;18(6):1611-1618.
55. Ofori K, Soderquist C, Murty VV, et al. The clinicalandpathologicalfeaturesofplasma cell myeloma post solid organ transplanta- tion. Am J Hematol. 2020;95(12):1531- 1541.
210
haematologica | 2022; 107(1)