Page 161 - 2022_01-Haematologica-web
P. 161
Oncogenic microRNA in T prolymphocytic leukemia
References
1. Matutes E, Brito-Babapulle V, Swansbury J, et al. Clinical and laboratory features of 78 cases of T-prolymphocytic leukemia. Blood. 1991;78(12):3269-3274.
2. Schrader A, Crispatzu G, Oberbeck S, et al. Actionable perturbations of damage respons- es by TCL1/ATM and epigenetic lesions form the basis of T-PLL. Nat Commun. 2018;9(1):697.
3. Stengel A, Kern W, Zenger M, et al. Genetic characterization of T-PLL reveals two major biologic subgroups and JAK3 mutations as prognostic marker. Genes Chromosomes Cancer. 2016;55(1):82-94.
4. Johansson P, Klein-Hitpass L, Choidas A, et al. SAMHD1 is recurrently mutated in T-cell prolymphocytic leukemia. Blood Cancer J. 2018;8(1):11.
5. Maljaei SH, Brito-Babapulle V, Hiorns LR, Catovsky D. Abnormalities of chromosomes 8, 11, 14, and X in T-prolymphocytic leukemia studied by fluorescence in situ hybridization. Cancer Genet Cytogenet. 1998;103(2):110-116.
6. Virgilio L, Narducci MG, Isobe M, et al. Identification of the TCL1 gene involved in T-cell malignancies. Proc Natl Acad Sci U S A. 1994;91(26):12530-12534.
7. Herling M, Patel KA, Teitell MA, et al. High TCL1 expression and intact T-cell receptor signaling define a hyperproliferative subset of T-cell prolymphocytic leukemia. Blood. 2008; ì111(1):328-337.
8. Gritti C, Dastot H, Soulier J, et al. Transgenic mice for MTCP1 develop T-cell prolympho- cytic leukemia. Blood. 1998;92(2):368-373.
9. Pekarsky Y, Drusco A, Kumchala P, Croce CM, Zanesi N. The long journey of TCL1 transgenic mice: lessons learned in the last 15 years. Gene Expr. 2015;16(3):129-135.
10. Virgilio L, Lazzeri C, Bichi R, et al. Deregulated expression of TCL1 causes T cell leukemia in mice. Proc Natl Acad Sci U S A. 1998;95(7):3885-3889.
11. Zanesi N, Balatti V, Riordan J, et al. A Sleeping Beauty screen reveals NF-kB activa- tion in CLL mouse model. Blood. 2013;121(21):4355-4358.
12. Bartel DP. Metazoan MicroRNAs. Cell. 2018;173(1):20-51.
13. Jongen-Lavrencic M, Sun SM, Dijkstra MK, Valk PJ, Lowenberg B. MicroRNA expression profiling in relation to the genetic hetero- geneity of acute myeloid leukemia. Blood. 2008;111(10):5078-5085.
14. Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834-838.
15. Fernandes Q. MicroRNA: defining a new niche in Leukemia. Blood Rev. 2017; 31(3):129-138.
16. Yeh CH, Moles R, Nicot C. Clinical signifi- cance of microRNAs in chronic and acute human leukemia. Mol Cancer. 2016;15(1):37.
17. Stavast CJ, Erkeland SJ. The non-canonical aspects of microRNAs: many roads to gene regulation. Cells. 2019;8(11):1465.
18. Krowiorz K, Ruschmann J, Lai C, et al. MiR- 139-5p is a potent tumor suppressor in adult acute myeloid leukemia. Blood Cancer J. 2016;6(12):e508.
19. Alemdehy MF, Haanstra JR, de Looper HW, et al. ICL-induced miR139-3p and miR199a- 3p have opposite roles in hematopoietic cell expansion and leukemic transformation. Blood. 2015;125(25):3937-3948.
20. Wojtowicz EE, Lechman ER, Hermans KG, et al. Ectopic miR-125a expression induces
long-term repopulating stem cell capacity in mouse and human hematopoietic progeni- tors. Cell Stem Cell. 2016;19(3):383-396.
21. Cimmino A, Calin GA, Fabbri M, et al. miR- 15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A. 2005;102(39):13944-13949.
22. Stavast CJ, Leenen PJM, Erkeland SJ. The interplay between critical transcription fac- tors and microRNAs in the control of normal and malignant myelopoiesis. Cancer Lett. 2018;427:28-37.
23. Laribi K, Lemaire P, Sandrini J, Baugier de Materre A. Advances in the understanding and management of T-cell prolymphocytic leukemia. Oncotarget. 2017;8(61):104664- 104686.
24. van Dongen JJ, Lhermitte L, Bottcher S, et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophe- notyping of normal, reactive and malignant leukocytes. Leukemia. 2012;26(9):1908-1975.
25.Garrido P, Ruiz-Cabello F, Barcena P, et al. Monoclonal TCR-Vbeta13.1+/CD4+/NKa+/ CD8-/+dim T-LGL lymphocytosis: evidence for an antigen-driven chronic T-cell stimula- tion origin. Blood. 2007;109(11):4890-4898.
26. Sandberg Y, Kallemeijn MJ, Dik WA, et al. Lack of common TCRA and TCRB clono- types in CD8(+)/TCRalphabeta(+) T-cell large granular lymphocyte leukemia: a review on the role of antigenic selection in the immunopathogenesis of CD8(+) T-LGL. Blood Cancer J. 2014;4(1):e172.
27. Kotrova M, Novakova M, Oberbeck S, et al. Next-generation amplicon TRB locus sequencing can overcome limitations of flow-cytometric Vbeta expression analysis and confirms clonality in all T-cell prolym- phocytic leukemia cases. Cytometry A. 2018; 93(11):1118-1124.
28. Batista L, Bourachot B, Mateescu B, Reyal F, Mechta-Grigoriou F. Regulation of miR- 200c/141 expression by intergenic DNA- looping and transcriptional read-through. Nat Commun. 2016;7:8959.
29. Fragoso R, Mao T, Wang S, et al. Modulating the strength and threshold of NOTCH onco- genic signals by mir-181a-1/b-1. PLoS Genet. 2012;8(8):e1002855.
30. Guan T, Dominguez CX, Amezquita RA, et al. ZEB1, ZEB2, and the miR-200 family form a counterregulatory network to regulate CD8(+) T cell fates. J Exp Med. 2018; 215(4):1153-1168.
31. Verschueren K, Remacle JE, Collart C, et al. SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5'-CACCT sequences in candidate target genes. J Biol Chem. 1999; 274(29):20489-20498.
32. Vander Ark A, Cao J, Li X. TGF-beta recep- tors: In and beyond TGF-beta signaling. Cell Signal. 2018;52:112-120.
33. Bilandzic M, Stenvers KL. Betaglycan: a mul- tifunctional accessory. Mol Cell Endocrinol. 2011;339(1-2):180-189.
34. Gatza CE, Oh SY, Blobe GC. Roles for the type III TGF-beta receptor in human cancer. Cell Signal. 2010;22(8):1163-1174.
35. Durig J, Bug S, Klein-Hitpass L, et al. Combined single nucleotide polymorphism- based genomic mapping and global gene expression profiling identifies novel chromo- somal imbalances, mechanisms and candi- date genes important in the pathogenesis of T-cell prolymphocytic leukemia with inv(14)(q11q32). Leukemia. 2007; 21(10): 2153-2163.
36. Diederichs S, Haber DA. Dual role for arg-
onautes in microRNA processing and post- transcriptional regulation of microRNA expression. Cell. 2007;131(6):1097-1108.
37. Han YC, Vidigal JA, Mu P, et al. An allelic series of miR-17 approximately 92-mutant mice uncovers functional specialization and cooperation among members of a microRNA polycistron. Nat Genet. 2015;47(7):766-775.
38. Shaham L, Binder V, Gefen N, Borkhardt A, Izraeli S. MiR-125 in normal and malignant hematopoiesis. Leukemia. 2012;26(9):2011- 2018.
39. Mateescu B, Batista L, Cardon M, et al. miR- 141 and miR-200a act on ovarian tumorigen- esis by controlling oxidative stress response. Nat Med. 2011;17(12):1627-1635.
40. Chen P, Guo X, Zhang L, et al. MiR-200c is a cMyc-activated miRNA that promotes nasopharyngeal carcinoma by downregulat- ing PTEN. Oncotarget. 2017;8(3):5206-5218.
41. Lin CH, Jackson AL, Guo J, Linsley PS, Eisenman RN. Myc-regulated microRNAs attenuate embryonic stem cell differentia- tion. EMBO J. 2009;28(20):3157-3170.
42. Hsi AC, Robirds DH, Luo J, et al. T-cell pro- lymphocytic leukemia frequently shows cutaneous involvement and is associated with gains of MYC, loss of ATM, and TCL1A rearrangement. Am J Surg Pathol. 2014; 38(11):1468-1483.
43. Dong M, Blobe GC. Role of transforming growth factor-beta in hematologic malignan- cies. Blood. 2006;107(12):4589-4596.
44. Bernabeu C, Lopez-Novoa JM, Quintanilla M. The emerging role of TGF-beta superfam- ily coreceptors in cancer. Biochim Biophys Acta. 2009;1792(10):954-973.
45. Tarasewicz E, Jeruss JS. Phospho-specific Smad3 signaling: impact on breast oncogene- sis. Cell Cycle. 2012;11(13):2443-2451.
46. Naka K, Jomen Y, Ishihara K, et al. Dipeptide species regulate p38MAPK-Smad3 signalling to maintain chronic myelogenous leukaemia stem cells. Nat Commun. 2015;6:8039.
47. Fardi M, Alivand M, Baradaran B, Farshdousti Hagh M, Solali S. The crucial role of ZEB2: From development to epithelial-to- mesenchymal transition and cancer complex- ity. J Cell Physiol. 2019;234(9):14783-14799.
48.Conidi A, Cazzola S, Beets K, et al. Few Smad proteins and many Smad-interacting proteins yield multiple functions and action modes in TGFbeta/BMP signaling in vivo. Cytokine Growth Factor Rev. 2011;22(5- 6):287-300.
49. Scott CL, Omilusik KD. ZEBs: Novel players in immune cell development and function. Trends Immunol. 2019;40(5):431-446.
50. Mansueto G, Forzati F, Ferraro A, et al. Identification of a new pathway for tumor progression: microRNA-181b up-regulation and CBX7 down-regulation by HMGA1 pro- tein. Genes Cancer. 2010;1(3):210-224.
51. Strotbek M, Schmid S, Sanchez-Gonzalez I, et al. miR-181 elevates Akt signaling by co- targeting PHLPP2 and INPP4B phosphatases in luminal breast cancer. Int J Cancer. 2017; 140(10):2310-2320.
52. Visone R, Rassenti LZ, Veronese A, et al. Karyotype-specific microRNA signature in chronic lymphocytic leukemia. Blood. 2009;114(18):3872-3879.
53.Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflamma- tion to cancer. Mol Cell. 2010;39(4):493-506.
54. Li QJ, Chau J, Ebert PJ, et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell. 2007;129(1):147-161.
haematologica | 2022; 107(1)
153