Page 58 - 2021_12-Haematologica-web
P. 58
B. de Boer et al.
protein in stem and progenitor cells and outcome correlation in AML and MDS. Blood. 2012;120(6):1290-1298.
11. Askmyr M, Agerstam H, Hansen N, et al. Selective killing of candidate AML stem cells by antibody targeting of IL1RAP. Blood. 2013;121(18):3709-3713.
12. Agerstam H, Hansen N, von Palffy S, et al. IL1RAP antibodies block IL-1-induced expansion of candidate CML stem cells and mediate cell killing in xenograft models. Blood. 2016;128(23):2683-2693.
13. Agerstam H, Karlsson C, Hansen N, et al. Antibodies targeting human IL1RAP (IL1R3) show therapeutic effects in xenograft models of acute myeloid leukemia. Proc Natl Acad Sci U S A. 2015; 112(34):10786-10791.
14. Sims JE, Smith DE. The IL-1 family: regula- tors of immunity. Nat Rev Immunol. 2010; 10(2):89-102.
15. Garlanda C, Dinarello CA, Mantovani A. The interleukin-1 family: back to the future. Immunity. 2013;39(6):1003-1018.
16. Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev. 2018;281(1):8-27.
17.Bosman MC, Schepers H, Jaques J, et al. The TAK1-NF-kappaB axis as therapeutic target for AML. Blood. 2014;124(20):3130- 3140.
18. Smith MA, Choudhary GS, Pellagatti A, et al. U2AF1 mutations induce oncogenic IRAK4 isoforms and activate innate immune pathways in myeloid malignan- cies. Nat Cell Biol. 2019;21(5):640-650.
19. Gasparini C, Celeghini C, Monasta L, Zauli G. NF-kappaB pathways in hematological malignancies. Cell Mol Life Sci. 2014; 71(11):2083-2102.
20. Li AJ, Calvi LM. The microenvironment in myelodysplastic syndromes: niche-mediat- ed disease initiation and progression. Exp Hematol. 2017;55:3-18.
21.Hoang T, Haman A, Goncalves O, et al. Interleukin 1 enhances growth factor- dependent proliferation of the clonogenic cells in acute myeloblastic leukemia and of normal human primitive hemopoietic pre- cursors. J Exp Med. 1988;168(2):463-474.
22. Delwel R, van Buitenen C, Salem M, et al. Interleukin-1 stimulates proliferation of acute myeloblastic leukemia cells by induc- tion of granulocyte-macrophage colony- stimulating factor release. Blood. 1989; 74(2):586-593.
23. Bradbury D, Bowen G, Kozlowski R, Reilly I, Russell N. Endogenous interleukin-1 can regulate the autonomous growth of the blast cells of acute myeloblastic leukemia by inducing autocrine secretion of GM- CSF. Leukemia. 1990;4(1):44-47.
24. de Jonge HJ, Woolthuis CM, Vos AZ, et al. Gene expression profiling in the leukemic
stem cell-enriched CD34(+) fraction identi- fies target genes that predict prognosis in normal karyotype AML. Leukemia. 2011;25(12):1825-1833.
25. Cancer Genome Atlas Research N, Ley TJ, Miller C, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013; 368 (22):2059-2074.
26. Capitano ML, Griesenauer B, Guo B, Cooper S, Paczesny S, Broxmeyer HE. The IL-33 Receptor/ST2 acts as a positive regu- lator of functional mouse bone marrow hematopoietic stem and progenitor cells. Blood Cells Mol Dis. 2020;84:102435.
27. Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev. 2018;281(1):8-27.
28. Mitchell K, Barreyro L, Todorova TI, et al. IL1RAP potentiates multiple oncogenic sig- naling pathways in AML. J Exp Med. 2018;215(6):1709-1727.
29. Muto T, Walker CS, Choi K, et al. Adaptive response to inflammation contributes to sustained myelopoiesis and confers a com- petitive advantage in myelodysplastic syn- drome HSCs. Nat Immunol. 2020; 21(5): 535-545.
30. Schepers K, Campbell TB, Passegue E. Normal and leukemic stem cell niches: insights and therapeutic opportunities. Cell Stem Cell. 2015;16(3):254-267.
31.Crane GM, Jeffery E, Morrison SJ. Adult haematopoietic stem cell niches. Nat Rev Immunol. 2017;17(9):573-590.
32. Mendez-Ferrer S, Bonnet D, Steensma DP, et al. Bone marrow niches in haematologi- cal malignancies. Nat Rev Cancer. 2020; 20(5):285-298.
33. Goardon N, Marchi E, Atzberger A, et al. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell. 2011;19(1):138-152.
34. Ye M, Zhang H, Yang H, et al. Hematopoietic differentiation is required for initiation of acute myeloid leukemia. Cell Stem Cell. 2015;17(5):611-623.
35. Barreyro L, Will B, Bartholdy B, et al. Overexpression of IL-1 receptor accessory protein in stem and progenitor cells and outcome correlation in AML and MDS. Blood. 2012;120(6):1290-1298.
36. Kumar MS, Hancock DC, Molina-Arcas M, et al. The GATA2 transcriptional network is requisite for RAS oncogene-driven non- small cell lung cancer. Cell. 2012; 149(3):642-655.
37. Waclawiczek A, Hamilton A, Rouault- Pierre K, et al. Mesenchymal niche remod- eling impairs hematopoiesis via stanniocal- cin 1 in acute myeloid leukemia. J Clin Invest. 2020;130(6):3038-3050.
38. Miraki-Moud F, Anjos-Afonso F, Hodby KA, et al. Acute myeloid leukemia does not
deplete normal hematopoietic stem cells but induces cytopenias by impeding their differentiation. Proc Natl Acad Sci U S A. 2013;110(33):13576-13581.
39. Baryawno N, Przybylski D, Kowalczyk MS, et al. A cellular taxonomy of the bone marrow stroma in Hhmeostasis and leukemia. Cell. 2019;177(7):1915-1932.e16.
40. Tikhonova AN, Dolgalev I, Hu H, et al. The bone marrow microenvironment at single- cell resolution. Nature. 2019;569(7755):222- 228.
41. Kumar B, Garcia M, Weng L, et al. Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secre- tion. Leukemia. 2018;32(3):575-587.
42. Schepers K, Pietras EM, Reynaud D, et al. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self- reinforcing leukemic niche. Cell Stem Cell. 2013;13(3):285-299.
43. Carter BZ, Mak PY, Wang X, et al. An ARC- regulated IL1beta/Cox-2/PGE2/beta- Catenin/ARC circuit controls leukemia- microenvironment interactions and confers drug resistance in AML. Cancer Res. 2019; 79(6):1165-1177.
44.Vicente C, Vazquez I, Conchillo A, et al. Overexpression of GATA2 predicts an adverse prognosis for patients with acute myeloid leukemia and it is associated with distinct molecular abnormalities. Leukemia. 2012;26(3):550-554.
45. Katsumura KR, Ong IM, DeVilbiss AW, Sanalkumar R, Bresnick EH. GATA factor- dependent positive-feedback circuit in acute myeloid leukemia cells. Cell Rep. 2016;16(9):2428-2441.
46. Cai Z, Kotzin JJ, Ramdas B, et al. Inhibition of inflammatory signaling in Tet2 mutant preleukemic cells mitigates stress-induced abnormalities and clonal hematopoiesis. Cell Stem Cell. 2018;23(6):833-849.e5.
47. Jaiswal S, Natarajan P, Silver AJ, et al. Clonal hematopoiesis and risk of athero- sclerotic cardiovascular disease. N Engl J Med. 2017;377(2):111-121.
48. Gnani D, Crippa S, Della Volpe L, et al. An early-senescence state in aged mesenchy- mal stromal cells contributes to hematopoi- etic stem and progenitor cell clonogenic impairment through the activation of a pro- inflammatory program. Aging Cell. 2019; 18(3):e12933.
49.Farr JN, Xu M, Weivoda MM, et al. Targeting cellular senescence prevents age- related bone loss in mice. Nat Med. 2017; 23(9):1072-1079.
50. Mendelson A, Frenette PS. Hematopoietic stem cell niche maintenance during home- ostasis and regeneration. Nat Med. 2014; 20(8):833-846.
3078
haematologica | 2021; 106(12)