Page 141 - 2021_12-Haematologica-web
P. 141
Cell-specific role of Hfe in Salmonella infection
sis protein HFE complexed with transferrin
receptor. Nature. 2000;403(6765):46-53.
9. Bridle KR, Frazer DM, Wilkins SJ, D et al. Disrupted hepcidin regulation in HFE-asso- ciated haemochromatosis and the liver as a regulator of body iron homoeostasis. Lancet.
2003;361(9358):669-673.
10. Muckenthaler MU, Rivella S, Hentze MW,
Galy B. A Red Carpet for Iron Metabolism.
Cell. 2017 Jan 26;168(3):344-361.
11.Zoller H, Theurl I, Koch RO, McKie AT, Vogel W, Weiss G. Duodenal cytochrome b and hephaestin expression in patients with iron deficiency and hemochromatosis.
Gastroenterology. 2003;125(3):746-754.
12. Brissot P, Pietrangelo A, Adams PC, de Graaff B, McLaren CE, Loreal O. Haemochromatosis. Nat Rev Dis Primers.
2018;4:18016.
13. Nairz M, Theurl I, Schroll A, et al. Absence
of functional Hfe protects mice from inva- sive Salmonella enterica serovar Typhimurium infection via induction of lipocalin-2. Blood. 2009;114(17):3642-3651.
14. Schaible UE, Kaufmann SH. Iron and micro- bial infection. Nat Rev Microbiol. 2004;2(12):946-953.
15. Andrews SC, Robinson AK, Rodriguez- Quinones F. Bacterial iron homeostasis. FEMS Microbiol Rev. 2003;27(2-3):215-237.
16. Gomes-Pereira S, Rodrigues PN, Appelberg R, Gomes MS. Increased susceptibility to Mycobacterium avium in hemochromatosis protein HFE-deficient mice. Infect Immun. 2008;76(10):4713-4719.
17. Olakanmi O, Schlesinger LS, Britigan BE. Hereditary hemochromatosis results in decreased iron acquisition and growth by Mycobacterium tuberculosis within human macrophages. J Leukoc Biol. 2007;81(1):195- 204.
18. Frank KM, Schneewind O, Shieh WJ. Investigation of a researcher's death due to septicemic plague. N Engl J Med. 2011; 364(26):2563-2564.
19. Miller HK, Schwiesow L, Au-Yeung W, Auerbuch V. Hereditary Hemochromatosis Predisposes Mice to Yersinia pseudotubercu- losis Infection Even in the Absence of the Type III Secretion System. Front Cell Infect Microbiol. 2016;6:69.
20. Nairz M, Schroll A, Haschka D, et al. Genetic and Dietary Iron Overload Differentially Affect the Course of Salmonella Typhimurium Infection. Front Cell Infect Microbiol. 2017;7:110.
21. Nairz M, Fritsche G, Crouch ML, Barton HC, Fang FC, Weiss G. Slc11a1 limits intra- cellular growth of Salmonella enterica sv. Typhimurium by promoting macrophage immune effector functions and impairing bacterial iron acquisition. Cell Microbiol. 2009;11(9):1365-1381.
22. Sonnweber T, Ress C, Nairz M, et al. High- fat diet causes iron deficiency via hepcidin-
independent reduction of duodenal iron absorption. J Nutr Biochem. 2012; 23(12):1600-1608.
23. Theurl I, Hilgendorf I, Nairz M, et al. On- demand erythrocyte disposal and iron recy- cling requires transient macrophages in the liver. Nat Med. 2016;22(8):945-951.
24. Herrmann T, Muckenthaler M, van der Hoeven F, et al. Iron overload in adult Hfe- deficient mice independent of changes in the steady-state expression of the duodenal iron transporters DMT1 and Ireg1/ferroportin. J Mol Med (Berl). 2004;82(1):39-48.
25. Vujic Spasic M, Kiss J, Herrmann T, et al. Hfe acts in hepatocytes to prevent hemochro- matosis. Cell Metab. 2008; 7(2):173-178.
26. Nairz M, Ferring-Appel D, Casarrubea D, et al. Iron Regulatory Proteins Mediate Host Resistance to Salmonella Infection. Cell Host Microbe. 2015;18(2):254-261.
27. Crouch ML, Castor M, Karlinsey JE, Kalhorn T, Fang FC. Biosynthesis and IroC-depen- dent export of the siderophore salmochelin are essential for virulence of Salmonella enterica serovar Typhimurium. Mol Microbiol. 2008;67(5):971-983.
28. Weiss G, Schaible UE. Macrophage defense mechanisms against intracellular bacteria. Immunol Rev. 2015;264(1):182-203.
29. Vazquez-Torres A, Jones-Carson J, Baumler AJ, et al. Extraintestinal dissemination of Salmonella by CD18-expressing phago- cytes. Nature. 1999;401(6755):804-808.
30. Vazquez-Torres A, Vallance BA, Bergman MA, et al. Toll-like receptor 4 dependence of innate and adaptive immunity to Salmonella: importance of the Kupffer cell network. J Immunol. 2004;172(10):6202-6208.
31. Weinberg ED. Iron availability and infection. Biochim Biophys Acta. 2009; 1790(7):600- 605.
32. Weiss G, Fuchs D, Hausen A, et al. Iron modulates interferon-gamma effects in the human myelomonocytic cell line THP-1. Exp Hematol. 1992;20(5):605-610.
33. Mencacci A, Cenci E, Boelaert JR, et al. Iron overload alters innate and T helper cell responses to Candida albicans in mice. J Infect Dis. 1997;175(6):1467-1476.
34. Fang FC. Antimicrobial reactive oxygen and nitrogen species: concepts and controver- sies. Nat Rev Microbiol. 2004;2(10):820-832.
35. Vazquez-Torres A, Jones-Carson J, Mastroeni P, Ischiropoulos H, Fang FC. Antimicrobial actions of the NADPH phago- cyte oxidase and inducible nitric oxide syn- thase in experimental salmonellosis. I. Effects on microbial killing by activated peri- toneal macrophages in vitro. J Exp Med. 2000;192(2):227-236.
36. Mastroeni P, Vazquez-Torres A, Fang FC, et al. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host
survival in vivo. J Exp Med. 2000;192(2):
237-248.
37. Richardson AR, Payne EC, Younger N, et al.
Multiple targets of nitric oxide in the tricar- boxylic acid cycle of Salmonella enterica serovar typhimurium. Cell Host Microbe. 2011;10(1):33-43.
38. Rosenberger CM, Finlay BB. Macrophages inhibit Salmonella typhimurium replication through MEK/ERK kinase and phagocyte NADPH oxidase activities. J Biol Chem. 2002;277(21):18753-18762.
39. Kim DK, Jeong JH, Lee JM, et al. Inverse ago- nist of estrogen-related receptor gamma controls Salmonella typhimurium infection by modulating host iron homeostasis. Nat Med. 2014;20(4):419-424.
40. Fuster JJ, Walsh K. The good, the bad, and the ugly of interleukin-6 signaling. EMBO J. 2014;33(13):1425-1427.
41. Xiao X, Yeoh BS, Vijay-Kumar M. Lipocalin 2: An Emerging Player in Iron Homeostasis and Inflammation. Annu Rev Nutr. 2017;37: 103-130.
42. Ganz T, Nemeth E. Iron homeostasis in host defence and inflammation. Nat Rev Immunol. 2015;15(8):500-510.
43. Soares MP, Weiss G. The Iron age of host- microbe interactions. EMBO Rep.;16(11): 1482-1500.
44. WuQ,ShenY,TaoY,WeiJ,etal. Hemojuvelin regulates the innate immune response to peritoneal bacterial infection in mice. Cell Discov. 2017;3:17028.
45. Weiss G, Werner-Felmayer G, Werner ER, Grunewald K, Wachter H, Hentze MW. Iron regulates nitric oxide synthase activity by controlling nuclear transcription. J Exp Med. 1994;180(3):969-976.
46. Bogdan C. Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol. 2015;36(3):161-178.
47. McCollister BD, Bourret TJ, Gill R, Jones- Carson J, Vazquez-Torres A. Repression of SPI2 transcription by nitric oxide-producing, IFNgamma-activated macrophages pro- motes maturation of Salmonella phago- somes. J Exp Med. 2005;202(5):625-635.
48. Jouanguy E, Doffinger R, Dupuis S, Pallier A, Altare F, Casanova JL. IL-12 and IFN-gamma in host defense against mycobacteria and salmonella in mice and men. Curr Opin Immunol. 1999;11(3):346-351.
49. Cruz E, Melo G, Lacerda R, Almeida S, Porto G. The CD8+ T-lymphocyte profile as a modifier of iron overload in HFE hemochro- matosis: an update of clinical and immuno- logical data from 70 C282Y homozygous subjects. Blood Cells Mol Dis. 2006;37(1):33- 39.
50. Nairz M, Schleicher U, Schroll A, et al. Nitric oxide-mediated regulation of ferroportin-1 controls macrophage iron homeostasis and immune function in Salmonella infection. J Exp Med. 2013;210(5):855-873.
haematologica | 2021; 106(12)
3161