Page 83 - 2021_10-Haematologica-web
P. 83

CLL cells affect osteoblastogenesis/osteoclastogenesis
mal bone counterparts, evidence a mutually active alter- ation of the local pathological bone marrow microenvi- ronment and suggest a widened perspective for novel therapeutic targets.
Disclosures
No conflicts of interest to disclose
Contributions
DdT and PG designed the experiments, analyzed data and wrote the paper; DdT, PG, MCC, FP, PL, SM, SP, SB, GG and KT performed the experiments; AI, MB, MM, GC, FF, JLR, FM, CM, GMS, AN and MF contributed materials and advice.
Acknowledgments
The authors would like to thank Dr. S. Zupo for providing supplementary CLL samples.
Funding
Funding was provided by Ricerca Corrente line “Host-Cancer Interaction” (to CM, FF); CNR flagship program Interomics 2015 (to CM); Associazione Italiana Ricerca sul Cancro (AIRC); 5 x mille n.9980 (to MF, AN) and by AIRC I.G. n.14326 (to MF) and n.15426 (to FF) and 16722, 10136 (to AN); and Compagnia San Paolo, Turin, Italy project 2017 0526 (to GC), and Italian Ministry of Health 5x1000 funds 2014 (to GC) and funds 2015 (to FF).
References
1. Fiz F, Marini C, Piva R, et al. Adult advanced chronic lymphocytic leukemia: computa- tional analysis of whole-body CT docu- ments a bone structure alteration. Radiology. 2014;271(3):805-813.
2.Marini C, Bruno S, Fiz F, et al. Functional activation of osteoclast commitment in chronic lymphocytic leukaemia: a possible role for RANK/RANKL pathway. Sci Rep. 2017;7(1):14159.
3. Borge M, Delpino MV, Podaza E, et al. Soluble RANKL production by leukemic cells in a case of chronic lymphocytic leukemia with bone destruction. Leuk Lymphoma. 2016;57(10):2468-2471.
4. Hua J, Ide S, Ohara S, et al. Hypercalcemia and osteolytic bone lesions as the major symptoms in a chronic lymphocytic leukemia/small lymphocytic lymphoma patient: a rare case. J Clin Exp Hematop. 2018;58(4):171-174.
5. Katz H, Sagun S, Griswold D, Alsharedi M. Solitary lytic bone metastasis: a rare presen- tation of small lymphocytic leukemia. Case Rep Hematol. 2018;2018:6154709.
6. McMillan P, Mundy G, Mayer P. Hypercalcaemia and osteolytic bone lesions in chronic lymphocytic leukaemia. Br Med J. 1980;281(6248):1.
7.Soni P, Aggarwal N, Rai A, et al. Chronic lymphocytic leukemia: a rare cause of pathological fracture of the femur. J Invest Med High Impact Case Rep. 2017;5(4):1-3.
8. Olszewski AJ, Gutman R, Eaton CB. Increased risk of axial fractures in patients with untreated chronic lymphocytic leukemia: a population-based analysis. Haematologica. 2016;101(12):e488-e491.
9. Burger JA, Gandhi V. The lymphatic tissue microenvironments in chronic lymphocytic leukemia: in vitro models and the signifi- cance of CD40-CD154 interactions. Blood. 2009;114(12):2560-2561; author reply 2561- 2562.
10. Burger JA, Ghia P, Rosenwald A, Caligaris- Cappio F. The microenvironment in mature B-cell malignancies: a target for new treat- ment strategies. Blood. 2009;114(16):3367- 3375.
11.Giannoni P, Pietra G, Travaini G, et al. Chronic lymphocytic leukemia nurse-like cells express the hepatocyte growth factor receptor (c-MET) and indoleamine 2,3- dioxygenase and display features of immunosuppressive type 2 skewed macrophages. Haematologica. 2014;99(6):2- 11.
12. Giannoni P, Scaglione S, Quarto R, et al. An
interaction between hepatocyte growth fac- tor and its receptor (c-MET) prolongs the survival of chronic lymphocytic leukemic cells through STAT3 phosphorylation: a potential role of mesenchymal cells in the disease. Haematologica. 2011;96(7):1015- 1023.
13. Lagneaux L, Delforge A, Bron D, De Bruyn C, Stryckmans P. Chronic lymphocytic leukemic B cells but not normal B cells are rescued from apoptosis by contact with nor- mal bone marrow stromal cells. Blood. 1998;91(7):2387-2396.
14. Bataille R, Chappard D, Marcelli C, et al. Mechanisms of bone destruction in multiple myeloma: the importance of an unbalanced process in determining the severity of lytic bone disease. J Clin Oncol. 1989;7(12):1909- 1914.
15. Roodman GD. Pathogenesis of myeloma bone disease. Leukemia. 2009;23(3):435- 441.
16. Valentin-Opran A, Charhon SA, Meunier PJ, Edouard CM, Arlot ME. Quantitative histol- ogy of myeloma-induced bone changes. Br J Haematol. 1982;52(4):601-610.
17. Schmiedel BJ, Scheible CA, Nuebling T, et al. RANKL expression, function, and thera- peutic targeting in multiple myeloma and chronic lymphocytic leukemia. Cancer Res. 2013;73(2):683-694.
18. Secchiero P, Corallini F, Barbarotto E, et al. Role of the RANKL/RANK system in the induction of interleukin-8 (IL-8) in B chronic lymphocytic leukemia (B-CLL) cells. J Cell Physiol. 2006;207(1):158-164.
19.De Totero D, Meazza R, Zupo S, et al. Interleukin-21 receptor (IL-21R) is up-regu- lated by CD40 triggering and mediates proapoptotic signals in chronic lymphocytic leukemia B cells. Blood. 2006;107(9):3708- 3715.
20. Bruno S, Ghiotto F, Tenca C, et al. N-(4- hydroxyphenyl)retinamide promotes apop- tosis of resting and proliferating B-cell chronic lymphocytic leukemia cells and potentiates fludarabine and ABT-737 cyto- toxicity. Leukemia. 2012;26(10):2260-2268.
21.Morabito F, Mosca L, Cutrona G, et al. Clinical monoclonal B lymphocytosis versus Rai 0 chronic lymphocytic leukemia: a com- parison of cellular, cytogenetic, molecular, and clinical features. Clin Cancer Res. 2013;19(21):5890-5900.
22. Hughes FJ, Turner W, Belibasakis G, Martuscelli G. Effects of growth factors and cytokines on osteoblast differentiation. Periodontol 2000. 2006;41:48-72.
23. Manolagas SC. The role of IL-6 type cytokines and their receptors in bone. Ann N Y Acad Sci. 1998;840:194-204.
24. Sims NA. Cell-specific paracrine actions of IL-6 family cytokines from bone, marrow and muscle that control bone formation and resorption. Int J Biochem Cell Biol. 2016;79: 14-23.
25. Wang HQ, Jia L, Li YT, Farren T, Agrawal SG, Liu FT. Increased autocrine interleukin-6 production is significantly associated with worse clinical outcome in patients with chronic lymphocytic leukemia. J Cell Physiol. 2019;234(8):13994-14006.
26. Burger JA, Tsukada N, Burger M, Zvaifler NJ, Dell'Aquila M, Kipps TJ. Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apopto- sis through stromal cell-derived factor-1. Blood. 2000;96(8):2655-2663.
27. Shinohara M, Koga T, Okamoto K, et al. Tyrosine kinases Btk and Tec regulate osteo- clast differentiation by linking RANK and ITAM signals. Cell. 2008;132(5):794-806.
28. Ding W, Nowakowski GS, Knox TR, et al. Bi-directional activation between mes- enchymal stem cells and CLL B-cells: impli- cation for CLL disease progression. Br J Haematol. 2009;147(4):471-483.
29. Gowen M, MacDonald BR, Russell RG. Actions of recombinant human gamma- interferon and tumor necrosis factor alpha on the proliferation and osteoblastic charac- teristics of human trabecular bone cells in vitro. Arthritis Rheum. 1988;31(12):1500- 1507.
30. Gilbert L, He X, Farmer P, et al. Expression of the osteoblast differentiation factor RUNX2 (Cbfa1/AML3/Pebp2alpha A) is inhibited by tumor necrosis factor-alpha. J Biol Chem. 2002;277(4):2695-2701.
31.Zhou H, Newnum AB, Martin JR, et al. Osteoblast/osteocyte-specific inactivation of Stat3 decreases load-driven bone forma- tion and accumulates reactive oxygen species. Bone. 2011;49(3):404-411.
32. Schulze-Edinghausen L, Durr C, Ozturk S, et al. Dissecting the prognostic significance and functional role of progranulin in chronic lymphocytic leukemia. Cancers. 2019;11(6): 822.
33. Delgado-Calle J, Anderson J, Cregor MD, et al. Bidirectional notch signaling and osteo- cyte-derived factors in the bone marrow microenvironment promote tumor cell pro- liferation and bone destruction in multiple myeloma. Cancer Res. 2016;76(5):1089- 1100.
34.
Kumar A, Anand T, Bhattacharyya J, Sharma A, Jaganathan BG. K562 chronic myeloid leukemia cells modify osteogenic differenti- ation and gene expression of bone marrow stromal cells. J Cell Commun Signal. 2018;12(2):441-450.
haematologica | 2021; 106(10)
2611


































































































   81   82   83   84   85