Page 190 - 2021_10-Haematologica-web
P. 190
S. El Hoss et al.
Disclosures
No conflicts of interest to disclose.
Contributions
SEH designed and conducted experiments, acquired and ana- lyzed data and wrote the manuscript; SC, AG, HY, MD, GF and SL conducted experiments, acquired and analyzed data; BBF and LJ provided biological samples; OR and AM supervised experi- ments and analyzed data; VB provided biological samples and discussed data; NM discussed data and wrote the manuscript, WEN designed research, analyzed data and wrote the manu- script. All authors read and edited the manuscript.
Acknowledgments
We thank the patients and their families for accepting to be part of this study. We thank Dr. Jean-Philippe Semblat, Dr. Maria Alejandra Lizarralde-Iragorri and Ms Sandrine Genetet for technical support, Dr. Flavia Guillem, Dr. Thiago Trovati Maciel and Dr. Olivier Hermine for helpful discussions, Dr.
Slimane Allali and the nursing staff of Hôpital de jour Pédiatrie Générale of Hôpital Necker Enfants Malades for patient man- agement. We thank Dr. Lionel Blanc for providing non-anemic bone marrow samples.
Funding
The work was supported by the Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de la Transfusion Sanguine, and grants from Laboratory of Excellence GR-Ex, reference ANR-11-LABX-0051, EUR G.E.N.E., refer- ence ANR-17-EURE-0013, and NIH grant DK32094. The labex GR-Ex is funded by the IdEx program “Investissements d’avenir” of the French National Research Agency, reference ANR-18-IDEX-0001. PICT-IBiSA is part of the France- BioImaging infrastructure funded by ANR-10-INBS-04. SEH was funded by the Ministère de l’Enseignement Supérieur et de la Recherche (Ecole Doctorale BioSPC) and received financial sup- port from, addmedica, the Club du Globule Rouge et du Fer and the Société Française d’Hématologie.
References
1. Pauling L, Itano HA, Singer SJ, Wells IC. Sickle cell anemia, a molecular disease. Science. 1949;110(3):543-548.
2. Piel FB, Steinberg MH, Rees DC. Sickle cell disease. N Engl J Med. 2017;376(16):1561- 1573.
3. Ware RE, de Montalembert M, Tshilolo L, Abboud MR. Sickle cell disease. Lancet. 2017;390(10091):311-323.
4. Arlet JB, Dussiot M, Moura IC, Hermine O, Courtois G. Novel players in beta-tha- lassemia dyserythropoiesis and new thera- peutic strategies. Curr Opin Hematol. 2016;23(3):181-188.
5. Arlet JB, Ribeil JA, Guillem F, et al. HSP70 sequestration by free alpha-globin promotes ineffective erythropoiesis in beta-thalas- saemia. Nature. 2014;514(7521):242-246.
6. Rivella S. Ineffective erythropoiesis and tha- lassemias. Curr Opin Hematol. 2009;16(3): 187-194.
7. Hasegawa S, Rodgers GP, Dwyer N, et al. Sickling of nucleated erythroid precursors from patients with sickle cell anemia. Exp Hematol. 1998;26(4):314-319.
8. Blouin MJ, De Paepe ME, Trudel M. Altered hematopoiesis in murine sickle cell disease. Blood. 1999;94(4):1451-1459.
9. Wu CJ, Krishnamurti L, Kutok JL, et al. Evidence for ineffective erythropoiesis in severe sickle cell disease. Blood. 2005;106 (10):3639-3645.
10. McArthur JG, Svenstrup N, Chen C, et al. A novel, highly potent and selective phospho- diesterase-9 inhibitor for the treatment of sickle cell disease. Haematologica. 2020;105(3):623-631.
11. Dulmovits BM, Appiah-Kubi AO, Papoin J, et al. Pomalidomide reverses gamma-globin silencing through the transcriptional repro- gramming of adult hematopoietic progeni- tors. Blood. 2016;127(11):1481-1492.
12.Weber L, Frati G, Felix T, et al. Editing a gamma-globin repressor binding site restores fetal hemoglobin synthesis and cor- rects the sickle cell disease phenotype. Sci Adv. 2020;6(7):eaay9392.
13. Brinkman EK, Chen T, Amendola M, van Steensel B. Easy quantitative assessment of genome editing by sequence trace decompo-
sition. Nucleic Acids Res. 2014;42(22):e168. 14. Hu J, Liu J, Xue F, et al. Isolation and func- tional characterization of human erythrob- lasts at distinct stages: implications for understanding of normal and disordered erythropoiesis in vivo. Blood.
2013;121(16):3246-3253.
15. Schindelin J, Arganda-Carreras I, Frise E, et
al. Fiji: an open-source platform for biologi- cal-image analysis. Nat Methods. 2012;9(7):676-682.
16. Mantel CR, O'Leary HA, Chitteti BR, et al. Enhancing hematopoietic stem cell trans- plantation efficacy by mitigating oxygen shock. Cell. 2015;161(7):1553-1565.
17. Mohyeldin A, Garzon-Muvdi T, Quinones- Hinojosa A. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell. 2010;7(2):150-161.
18. Yeo JH, Cosgriff MP, Fraser ST. Analyzing the formation, morphology, and integrity of erythroblastic islands. Methods Mol Biol. 2018;1698:133-152.
19. Lizarralde Iragorri MA, El Hoss S, Brousse V, et al. A microfluidic approach to study the effect of mechanical stress on erythrocytes in sickle cell disease. Lab Chip. 2018;18 (19):2975-2984.
20. Antoniani C, Meneghini V, Lattanzi A, et al. Induction of fetal hemoglobin synthesis by CRISPR/Cas9-mediated editing of the human beta-globin locus. Blood. 2018;131 (17):1960-1973.
21. Zhang Y, Paikari A, Sumazin P, et al. Metformin induces FOXO3-dependent fetal hemoglobin production in human primary erythroid cells. Blood. 2018;132(3):321-333.
22. Kalfa T, McGrath KE. Analysis of erythro- poiesis using imaging flow cytometry. Methods Mol Biol. 2018;1698:175-192.
23. Bolte S, Cordelieres FP. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc. 2006;224(Pt 3):213- 232.
24.Manders EM, Stap J, Brakenhoff GJ, van Driel R, Aten JA. Dynamics of three-dimen- sional replication patterns during the S- phase, analysed by double labelling of DNA and confocal microscopy. J Cell Sci. 1992;103 ( Pt 3):857-862.
25. Schallmeiner E, Oksanen E, Ericsson O, et al. Sensitive protein detection via triple-binder
26.
27.
28.
29.
30.
31.
32.
33.
34.
proximity ligation assays. Nat Methods. 2007;4(2):135-137.
Moutouh-de Parseval LA, Verhelle D, Glezer E, et al. Pomalidomide and lenalidomide reg- ulate erythropoiesis and fetal hemoglobin production in human CD34+ cells. J Clin Invest. 2008;118(1):248-258.
Finch CA, Lee MY, Leonard JM. Continuous RBC transfusions in a patient with sickle cell disease. Arch Intern Med. 1982;142(2):279- 282.
Powars DR, Weiss JN, Chan LS, Schroeder WA. Is there a threshold level of fetal hemo- globin that ameliorates morbidity in sickle cell anemia? Blood. 1984;63(4):921-926. Sewchand LS, Johnson CS, Meiselman HJ. The effect of fetal hemoglobin on the sick- ling dynamics of SS erythrocytes. Blood Cells. 1983;9(1):147-166.
Boyer SH, Margolet L, Boyer ML, et al. Inheritance of F cell frequency in heterocel- lular hereditary persistence of fetal hemoglo- bin: an example of allelic exclusion. Am J Hum Genet. 1977;29(3):256-271.
Boyer SH, Belding TK, Margolet L, Noyes AN. Fetal hemoglobin restriction to a few erythrocytes (F cells) in normal human adults. Science. 1975;188(4186):361-363. Boyer SH, Belding TK, Margolte L, Noyes AN, Burke PJ, Bell WR. Variations in the fre- quency of fetal hemoglobin-bearing erythro- cytes (F-cells) in well adults, pregnant women, and adult leukemics. Johns Hopkins Med J. 1975;137(3):105-115.
Wood WG, Stamatoyannopoulos G, Lim G, Nute PE. F-cells in the adult: normal values and levels in individuals with hereditary and acquired elevations of Hb F. Blood. 1975;46(5):671-682.
Stamatoyannopoulos G, Veith R, Galanello R, Papayannopoulou T. Hb F production in stressed erythropoiesis: observations and kinetic models. Ann N Y Acad Sci. 1985;445:188-197.
35. Dover GJ, Boyer SH, Charache S, Heintzelman K. Individual variation in the production and survival of F cells in sickle- cell disease. N Engl J Med. 1978;299(26): 1428-1435.
36. Franco RS, Lohmann J, Silberstein EB, et al. Time-dependent changes in the density and hemoglobin F content of biotin-labeled sick-
2718
haematologica | 2021; 106(10)