Page 164 - 2021_10-Haematologica-web
P. 164
J.E. Ramis-Zaldivar et al.
Catalana de Recerca i Estudis Avançats" (ICREA) and CERCA Programme of the Generalitat de Catalunya. This work was developed at the Centro Esther Koplowitz, Barcelona, Spain. The group is supported by Acció instrumental d’incorporació de científics i tecnòlegs PERIS 2016 (SLT002/16/00336) from the Generalitat de Catalunya.
Data-sharing statement
The copy-number data reported in this article have been deposit- ed in the Gene Expression Omnibus database under accession number GSE155055. Sequencing data have been deposited in the European Nucleotide Archive (ENA, accession number ERP123243).
References
1. Swerdlow SH, Campo E, Harris NL, et al. (Eds) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (Revised 4th edition). IARC Lyon 2017.
2. Montes-Moreno S, Gonzalez-Medina A-R, Rodriguez-Pinilla S-M, et al. Aggressive large B-cell lymphoma with plasma cell differenti- ation: immunohistochemical characteriza- tion of plasmablastic lymphoma and diffuse large B-cell lymphoma with partial plas- mablastic phenotype. Haematologica. 2010;95(8):1342-1349.
3. Morscio J, Dierickx D, Nijs J, et al. Clinicopathologic comparison of plas- mablastic lymphoma in HIV-positive, immunocompetent, and posttransplant patients: single-center series of 25 cases and meta-analysis of 277 reported cases. Am J Surg Pathol. 2014;38(7):875-886.
4. Castillo JJ, Bibas M, Miranda RN. The biolo- gy and treatment of plasmablastic lym- phoma. Blood. 2015;125(15):2323-2330.
5. Dong HY, Scadden DT, de Leval L, Tang Z, Isaacson PG, Harris NL. Plasmablastic lym- phoma in HIV-positive patients: an aggres- sive Epstein-Barr virus-associated extra- medullary plasmacytic neoplasm. Am J Surg Pathol. 2005;29(12):1633-1641.
6. Valera A, Balague O, Colomo L, et al. IG/MYC rearrangements are the main cyto- genetic alteration in plasmablastic lym- phomas. Am J Surg Pathol. 2010;34(11): 1686-1694.
7. Taddesse-Heath L, Meloni-Ehrig A, Scheerle J, Kelly JC, Jaffe ES. Plasmablastic lym- phoma with MYC translocation: evidence for a common pathway in the generation of plasmablastic features. Mod Pathol. 2010;23(7):991-999.
8. Chang C-C, Zhou X, Taylor JJ, et al. Genomic profiling of plasmablastic lym- phoma using array comparative genomic hybridization (aCGH): revealing significant overlapping genomic lesions with diffuse large B-cell lymphoma. J Hematol Oncol. 2009;2:247.
9. Garcia-Reyero J, Martinez Magunacelaya N, Gonzalez de Villambrosia S, et al. Genetic lesions in MYC and STAT3 drive oncogenic transcription factor overexpression in plas- mablastic lymphoma. Haematologica. 2021;106(4):1120-1128.
10. Liu Z, Filip I, Gomez K, et al. Genomic char- acterization of HIV-associated plasmablastic lymphoma identifies pervasive mutations in the JAK-STAT pathway. Blood Cancer Discov. 2020;1(1):112-125.
11. Chapman J, Gentles AJ, Sujoy V, et al. Gene expression analysis of plasmablastic lym- phoma identifies downregulation of B-cell receptor signaling and additional unique transcriptional programs. Leukemia. 2015;29(11):2270-2273.
12. Hans CP, Weisenburger DD, Greiner TC, et al. Confirmation of the molecular classifica- tion of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103(1):275-282.
13. Bea S, Zettl A, Wright G, et al. Diffuse large B-cell lymphoma subgroups have distinct genetic profiles that influence tumor biology and improve gene-expression-based survival prediction. Blood. 2005;106(9):3183-3190.
14. Glitza IC, Lu G, Shah R, et al. Chromosome 8q24.1/c-MYC abnormality: a marker for high-risk myeloma. Leuk Lymphoma. 2015;56(3):602-607.
15.Tchernonog E, Faurie P, Coppo P, et al. Clinical characteristics and prognostic fac- tors of plasmablastic lymphoma patients: analysis of 135 patients from the LYSA group. Ann Oncol. 2017;28(4):843-848.
16. Castillo JJ, Winer ES, Stachurski D, et al. Prognostic factors in chemotherapy-treated patients with HIV-associated plasmablastic lymphoma. Oncologist. 2010;15(3):293-299.
17. Guerrero-Garcia TA, Mogollon RJ, Castillo JJ. Bortezomib in plasmablastic lymphoma: A glimpse of hope for a hard-to-treat dis- ease. Leuk Res. 2017;62:12-16.
18. Nadeu F, Clot G, Delgado J, et al. Clinical impact of the subclonal architecture and mutational complexity in chronic lympho- cytic leukemia. Leukemia. 2018;32(3):645- 653.
19. Landau DA, Tausch E, Taylor-Weiner AN, et al. Mutations driving CLL and their evolu- tion in progression and relapse. Nature. 2015;526(7574):525-530.
20. Scholtysik R, Kreuz M, Klapper W, et al. Detection of genomic aberrations in molec- ularly defined Burkitt’s lymphoma by array- based, high resolution, single nucleotide polymorphism analysis. Haematologica. 2010;95(12):2047-2055.
21. Karube K, Enjuanes A, Dlouhy I, et al. Integrating genomic alterations in diffuse large B-cell lymphoma identifies new rele- vant pathways and potential therapeutic tar- gets. Leukemia. 2018;32(3):675-684.
22. Lopez-Corral L, Sarasquete ME, Bea S, et al. SNP-based mapping arrays reveal high genomic complexity in monoclonal gam- mopathies, from MGUS to myeloma status. Leukemia. 2012;26(12):2521-2529.
23. Paiva B, Corchete LA, Vidriales M-B, et al. Phenotypic and genomic analysis of multi- ple myeloma minimal residual disease tumor cells: a new model to understand chemoresistance. Blood. 2016;127(15):1896- 1906.
24.Schmitz R, Young RM, Ceribelli M, et al. Burkitt lymphoma pathogenesis and thera- peutic targets from structural and functional genomics. Nature. 2012;490(7418):116-120.
25. Schmitz R, Wright GW, Huang DW, et al. Genetics and pathogenesis of diffuse large B- cell lymphoma. N Engl J Med. 2018;378 (15):1396-1407.
26. Lohr JG, Stojanov P, Carter SL, et al. Widespread genetic heterogeneity in multi- ple myeloma: implications for targeted ther- apy. Cancer Cell. 2014;25(1):91-101.
27. Teoh PJ, Chung T-H, Chng PYZ, Toh SHM, Chng WJ. IL6R-STAT3-ADAR1 (P150) inter- play promotes oncogenicity in multiple myeloma with 1q21 amplification. Haematologica. 2020;105(5):1391-1404.
28. Shaughnessy J. Amplification and overex- pression of CKS1B at chromosome band 1q21 is associated with reduced levels of p27Kip1 and an aggressive clinical course in multiple myeloma. Hematology. 2005;10 (Suppl 1):117-126.
29.Koskela HLM, Eldfors S, Ellonen P, et al. Somatic STAT3 mutations in large granular lymphocytic leukemia. N Engl J Med. 2012;366(20):1905-1913.
30. Dang CV, O’donnell KA, Juopperi T. The great MYC escape in tumorigenesis. Cancer Cell. 2005;8(3):177-178.
31. Papaemmanuil E, Rapado I, Li Y, et al. RAG- mediated recombination is the predominant driver of oncogenic rearrangement in ETV6- RUNX1 acute lymphoblastic leukemia. Nat Genet. 2014;46(2):116-125.
32. Meyer N, Penn LZ. Reflecting on 25 years with MYC. Nat Rev Cancer. 2008;8(12):976- 990.
33. Khodabakhshi AH, Morin RD, Fejes AP, et al. Recurrent targets of aberrant somatic hypermutation in lymphoma. Oncotarget. 2012;3(11):1308-1319.
34. An G, Xu Y, Shi L, et al. Chromosome 1q21 gains confer inferior outcomes in multiple myeloma treated with bortezomib but copy number variation and percentage of plasma cells involved have no additional prognostic value. Haematologica. 2014;99(2):353-359.
35. Pasqualucci L, Compagno M, Houldsworth J, et al. Inactivation of the PRDM1/BLIMP1 gene in diffuse large B cell lymphoma. J Exp Med. 2006;203(2):311-317.
36. Hobbs GA, Der CJ, Rossman KL. RAS iso- forms and mutations in cancer at a glance. J Cell Sci. 2016;129(7):1287-1292.
37. Noeparast A, Teugels E, Giron P, et al. Non- V600 BRAF mutations recurrently found in lung cancer predict sensitivity to the combi- nation of trametinib and dabrafenib. Oncotarget. 2017;8(36):60094-60108.
38. Kim SJ, Shin H-T, Lee H-O, et al. Recurrent mutations of MAPK pathway genes in mul- tiple myeloma but not in amyloid light- chain amyloidosis. Oncotarget. 2016;7(42): 68350-68359.
39. Ohgami RS, Ma L, Monabati A, Zehnder JL, Arber DA. STAT3 mutations are present in aggressive B-cell lymphomas including a subset of diffuse large B-cell lymphomas with CD30 expression. Haematologica. 2014;99(7):e105-107.
40. Valera A, Colomo L, Martínez A, et al. ALK- positive large B-cell lymphomas express a terminal B-cell differentiation program and activated STAT3 but lack MYC rearrange- ments. Mod Pathol. 2013;26(10):1329-1337.
41. Ding BB, Yu JJ, Yu RY-L, et al. Constitutively activated STAT3 promotes cell proliferation and survival in the activated B-cell subtype of diffuse large B-cell lymphomas. Blood. 2008;111(3):1515-1523.
42. van de Donk NWCJ, Lokhorst HM, Bloem AC. Growth factors and antiapoptotic sig- naling pathways in multiple myeloma. Leukemia. 2005;19(12):2177-2185.
43. Brocke-Heidrich K, Kretzschmar AK, Pfeifer G, et al. Interleukin-6-dependent gene
2692
haematologica | 2021; 106(10)