Page 23 - 2021_09-Haematologica-web
P. 23

Manufactured red blood cells
generation of human red cells for transfu- sion. Curr Opin Hematol. 2012;19(3):163- 169.
18. Douay L. Why industrial production of red blood cells from stem cells is essential for tomorrow's blood transfusion. Regen Med. 2018;13(6):627-632.
19. Migliaccio AR, Palis J. Blood in a dish: in vitro synthesis of red blood cells. Drug Discov Today Dis Mech. 2011; 8(1-2):e3-e8
20. Migliaccio AR, Masselli E, Varricchio L, Whitsett C. Ex-vivo expansion of red blood cells: How real for transfusion in humans? Blood Rev. 2012;26(2):81-95.
21. Rousseau GF, Mazurier C, Douay L. Culturing red blood cells from stem cells: a solution to present and future challenges of transfusion medicine? ISBT Sci Ser. 2016;11(S1):111-117.
22. Severn CE, Toye AM. The challenge of growing enough reticulocytes for transfu- sion. ISBT Sci Ser. 2018;13(1):80-86.
23. Timmins NE, Nielsen LK. Manufactured RBC - rivers of blood, or an oasis in the desert? Biotechnol Adv. 2011; 29(6):661-666.
24. Timmins NE, Nielsen LK. Blood cell manu- facture: current methods and future chal- lenges. Trends Biotechnol. 2009;27(7):415- 422.
25. Rousseau GF, Giarratana MC, Douay L. Large-scale production of red blood cells from stem cells: What are the technical chal- lenges ahead? Biotechnol J. 2014;9(1):28-38.
26. Von Lindern M, Zauner W, Mellitzer G, et al. The glucocorticoid receptor cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation of ery- throid progenitors in vitro. Blood. 1999;94 (2):550-559.
27. Timmins NE, Athanasas S, Günther M, Buntine P, Nielsen LK. Ultra-high-yield man- ufacture of red blood cells from hematopoi- etic stem cells. Tissue Eng Part C Methods. 2011;17(11):1131-1137.
28.Griffiths RE, Kupzig S, Cogan N, et al. Maturing reticulocytes internalize plasma membrane in glycophorin A-containing vesicles that fuse with autophagosomes before exocytosis. Blood. 2012;119(26): 6296-6306.
29. van den Akker E, Satchwell TJ, Pellegrin S, Daniels G, Toye AM. The majority of the in vitro erythroid expansion potential resides in CD34(-) cells, outweighing the contribu- tion of CD34(+) cells and significantly increasing the erythroblast yield from peripheral blood samples. Haematologica. 2010; 95(9):1594-1598.
30. Heideveld E, Hampton-O'Neil LA, Cross SJ, et al. Glucocorticoids induce differentiation of monocytes towards macrophages that share functional and phenotypical aspects with erythroblastic island macrophages. Haematologica. 2018;103(3):395-405.
31. Heideveld E, Masiello F, Marra M, et al. CD14+ cells from peripheral blood positive- ly regulate hematopoietic stem and progeni- tor cell survival resulting in increased ery- throid yield. Haematologica. 2015;100(11): 1396-1406.
32. Bernecker C, Ackermann M, Lachmann N, et al. Enhanced ex vivo generation of ery- throid cells from human induced pluripotent stem cells in a simplified cell culture system with low cytokine support. Stem Cells Dev. 2019;28(23):1540-1551.
33. Trakarnsanga K, Griffiths RE, Wilson MC, et al. An immortalized adult human ery- throid line facilitates sustainable and scala- ble generation of functional red cells. Nat
Commun. 2017;8:14750.
34. Migliaccio AR, Whitsett C, Migliaccio G.
Erythroid cells in vitro: from developmental biology to blood transfusion products. Curr Opin Hematol. 2009;16(4):259-268.
35. Giani FC, Fiorini C, Wakabayashi A, et al. Targeted application of human genetic vari- ation can improve red blood cell production from stem cells. Cell Stem Cell. 2016;18(1):73-78.
36.Lasho TL, Pardanani A, Tefferi A. LNK mutations in JAK2 mutation-negative ery- throcytosis. N Engl J Med. 2010;363(12): 1189-1190.
37. Spolverini A, Pieri L, Guglielmelli P, et al. Infrequent occurrence of mutations in the PH domain of LNK in patients with JAK2 mutation-negative 'idiopathic' erythrocyto- sis. Haematologica. 2013;98(9):e101-102.
38. van der Harst P, Zhang W, Mateo Leach I, et al. Seventy-five genetic loci influencing the human red blood cell. Nature. 2012;492 (7429):369-375.
39. Thornton N, Karamatic Crew V, Tilley L, et al. Disruption of the tumour-associated EMP3 enhances erythroid proliferation and causes the MAM-negative phenotype. Nat Commun. 2020;11(1):3569.
40. Fares I, Chagraoui J, Gareau Y, et al. Cord blood expansion. Pyrimidoindole deriva- tives are agonists of human hematopoietic stem cell self-renewal. Science. 2014;345 (6203):1509-1512.
41. Boitano AE, Wang J, Romeo R, et al. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science. 2010;329(5997):1345- 1348.
42. Zhang CC, Kaba M, Iizuka S, Huynh H, Lodish HF. Angiopoietin-like 5 and IGFBP2 stimulate ex vivo expansion of human cord blood hematopoietic stem cells as assayed by NOD/SCID transplantation. Blood. 2008;111(7):3415-3423.
43. Delaney C, Heimfeld S, Brashem-Stein C, et al. Voorhies H, Manger RL, Bernstein ID. Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat Med. 2010;16 (2):232-236.
44. Liu S, Wu M, Lancelot M, et al. BMI1 enables extensive expansion of functional erythroblasts from human peripheral blood mononuclear cells. Mol Ther. 2021;29(5): 1918-1932.
45. Li Z, Qian P, Shao W, et al. Suppression of m(6)A reader Ythdf2 promotes hematopoi- etic stem cell expansion. Cell Res. 2018;28(9):904-917.
46. Severn CE, Eissa AM, Langford CR, et al. Ex vivo culture of adult CD34(+) stem cells using functional highly porous polymer scaf- folds to establish biomimicry of the bone marrow niche. Biomaterials. 2019; 225:119533.
47. Severn CE, Macedo H, Eagle MJ, Rooney P, Mantalaris A, Toye AM. Polyurethane scaf- folds seeded with CD34(+) cells maintain early stem cells whilst also facilitating pro- longed egress of haematopoietic progeni- tors. Sci Rep. 2016;6:32149.
48.Raic A, Rodling L, Kalbacher H, Lee- Thedieck C. Biomimetic macroporous PEG hydrogels as 3D scaffolds for the multiplica- tion of human hematopoietic stem and pro- genitor cells. Biomaterials. 2014;35(3): 929- 940.
49. Rodling L, Raic A, Lee-Thedieck C. Fabrication of biofunctionalized, cell-laden macroporous 3D PEG hydrogels as bone
marrow analogs for the cultivation of human hematopoietic stem and progenitor cells. Methods Mol Biol. 2014;1202:121-130.
50. Mortera-Blanco T, Mantalaris A, Bismarck A, Aqel N, Panoskaltsis N. Long-term cytokine-free expansion of cord blood mononuclear cells in three-dimensional scaf- folds. Biomaterials. 2011;32(35):9263-9270.
51. Raic A, Naolou T, Mohra A, Chatterjee C, Lee-Thedieck C. 3D models of the bone marrow in health and disease: yesterday, today and tomorrow. MRS Commun. 2019;9(1):37-52.
52. Bello AB, Park H, Lee SH. Current approach- es in biomaterial-based hematopoietic stem cell niches. Acta Biomater. 2018;72:1-15.
53. Wilkinson AC, Ishida R, Kikuchi M, et al. Long-term ex vivo haematopoietic-stem- cell expansion allows nonconditioned transplantation. Nature. 2019;571(7763): 117-121.
54. Bauer A, Tronche F, Wessely O, et al. The glucocorticoid receptor is required for stress erythropoiesis. Gen Dev. 1999;13(22):2996- 3002.
55. Wessely O, Deiner EM, Beug H, von Lindern M. The glucocorticoid receptor is a key reg- ulator of the decision between self-renewal and differentiation in erythroid progenitors. EMBO J. 1997;16(2):267-280.
56. Flygare J, Estrada VR, Shin C, Gupta S, Lodish HF. HIF1α synergizes with glucocor- ticoids to promote BFU-E progenitor self- renewal. Blood. 2011;117(12):3435-3444.
57. Narla A, Dutt S, McAuley JR, et al. Dexamethasone and lenalidomide have dis- tinct functional effects on erythropoiesis. Blood. 2011;118(8):2296-2304.
58. Huang NJ, Lin YC, Lin CY, et al. Enhanced phosphocholine metabolism is essential for terminal erythropoiesis. Blood. 2018;131 (26):2955-2966.
59. Zingariello M, Bardelli C, Sancillo L, et al. Dexamethasone predisposes human ery- throblasts toward impaired lipid metabo- lism and renders their ex vivo expansion highly dependent on plasma lipoproteins. Front Physiol. 2019;10:281.
60.Bernecker C, Köfeler H, Pabst G, et al. Cholesterol deficiency causes impaired osmotic stability of cultured red blood cells. Front Physiol. 2019;10:1529.
61. Olivier EN, Zhang S, Yan Z, et al. PSC-RED and MNC-RED: albumin-free and low- transferrin robust erythroid differentiation protocols to produce human enucleated red blood cells. Exp Hematol. 2019;75:31- 52.e15.
62. Grillo AS, SantaMaria AM, Kafina MD, et al. Restored iron transport by a small molecule promotes absorption and hemoglobiniza- tion in animals. Science. 2017;356(6338): 608-616.
63. Aoto M, Iwashita A, Mita K, Ohkubo N, Tsujimoto Y, Mitsuda N. Transferrin recep- tor 1 is required for enucleation of mouse erythroblasts during terminal differentia- tion. FEBS Open Bio. 2019;9(2):291-303.
64. Geisser P, Burckhardt S. The pharmacokinet- ics and pharmacodynamics of iron prepara- tions. Pharmaceutics. 2011;3(1):12-33.
65.Trampler F, Sonderhoff SA, Pui PW, et al. Kilburn DG, Piret JM. Acoustic cell filter for high density perfusion culture of hybridoma cells. Biotechnology (N Y). 1994;12(3):281- 284.
66. Zeming KK, Sato Y, Yin L, et al. Microfluidic label-free bioprocessing of human reticulo- cytes from erythroid culture. Lab Chip. 2020;20(18):3445-3460.
haematologica | 2021; 106(9)
2311


































































































   21   22   23   24   25