Page 36 - 2021_06-Haematologica-web
P. 36

B. Bruno et al.
Immunity. 2016;44(3):712.
8. Sadelain M, Riviere I, Riddell S.
Therapeutic T cell engineering. Nature.
2017;545(7655):423-431.
9. Abbott RC, Cross RS, Jenkins MR. Finding
the Keys to the CAR: identifying novel tar- get antigens for T cell redirection immunotherapies. Int J Mol Sci. 2020;21 (2):515.
10.Maude S, Barrett DM. Current status of chimeric antigen receptor therapy for haematological malignancies. Br J Haematol. 2016;172(1):11-22.
11. Carpenter RO, Evbuomwan MO, Pittaluga S, et al. B-cell maturation antigen is a prom- ising target for adoptive T-cell therapy of multiple myeloma. Clinical Cancer Res. 2013;19(8):2048-2060.
12. O'Connor BP, Raman VS, Erickson LD, et al. BCMA is essential for the survival of long-lived bone marrow plasma cells. J Exp Med. 2004;199(1):91-98.
13.Mackay F, Tangye SG. The role of the BAFF/APRIL system in B cell homeostasis and lymphoid cancers. Curr Opin Pharmacol. 2004;4(4):347-354.
14. Ng LG, Mackay CR, Mackay F. The BAFF/APRIL system: life beyond B lym- phocytes. Mol Immunol. 2005;42(7):763- 772.
15. Claudio JO, Masih-Khan E, Tang H, et al. A molecular compendium of genes expressed in multiple myeloma. Blood. 2002;100(6): 2175-2186.
16.Novak AJ, Darce JR, Arendt BK, et al. Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival. Blood. 2004;103(2): 689-694.
17.Moreaux J, Legouffe E, Jourdan E, et al. BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood. 2004;103(8):3148-3157.
18. Laurent SA, Hoffmann FS, Kuhn PH, et al. gamma-Secretase directly sheds the sur- vival receptor BCMA from plasma cells. Nat Commun. 2015;6:7333.
19.Ghermezi M, Li M, Vardanyan S, et al. Serum B-cell maturation antigen: a novel biomarker to predict outcomes for multiple myeloma patients. Haematologica. 2017; 102(4):785-795.
20. Ali SA, Shi V, Maric I, et al. T cells express- ing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood. 2016;128(13): 1688-1700.
21. Mackay F, Schneider P. TACI, an enigmatic BAFF/APRIL receptor, with new unappreci- ated biochemical and biological properties. Cytokine Growth Factor Rev. 2008;19(3- 4):263-276.
22.Lee L, Draper B, Chaplin N, et al. An APRIL-based chimeric antigen receptor for dual targeting of BCMA and TACI in mul- tiple myeloma. Blood. 2018;131(7):746-758.
23. Quinn J, Glassford J, Percy L, et al. APRIL promotes cell-cycle progression in primary multiple myeloma cells: influence of D- type cyclin group and translocation status. Blood. 2011;117(3):890-901.
24. Popat R, Zweegman S, Cavet J, et al. Phase 1 first-in-human study of AUTO2, the first chimeric antigen receptor (CAR) T cell tar- geting APRIL for patients with relapsed/refractory multiple myeloma (RRMM). Blood. 2019;134(Suppl 1):S3112.
25. Poe JC, Minard-Colin V, Kountikov EI, Haas KM, Tedder TF. A c-Myc and surface CD19 signaling amplification loop pro- motes B cell lymphoma development and
progression in mice. J Immunol. 2012;189
(5):2318-2325.
26. Ali S, Moreau A, Melchiorri D, et al.
Blinatumomab for acute lymphoblastic leukemia: the first bispecific T-cell engager antibody to be approved by the EMA for minimal residual disease. Oncologist. 2020;25(4):e709-e715.
27. Loffler A, Kufer P, Lutterbuse R, et al. A recombinant bispecific single-chain anti- body, CD19 x CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood. 2000;95(6):2098-2103.
28. Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modi- fied T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365(8):725-733.
29.Schuster SJ, Svoboda J, Chong EA, et al. Chimeric antigen receptor T cells in refrac- tory B-cell lymphomas. N Engl J Med. 2017;377(26):2545-2554.
30. Nerreter T, Letschert S, Götz R, et al. Super- resolution microscopy reveals ultra-low CD19 expression on myeloma cells that triggers elimination by CD19 CAR-T. Nat Commun. 2019;10(1):3137.
cule? Nat Rev Cancer. 2011;11(4):254-267. 43. Gunthert U, Hofmann M, Rudy W, et al. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells.
Cell. 1991;65(1):13-24.
44. Legras S, Gunthert U, Stauder R, et al. A
strong expression of CD44-6v correlates with shorter survival of patients with acute myeloid leukemia. Blood. 1998;91(9):3401- 3413.
45. Tijink BM, Buter J, de Bree R, et al. A phase I dose escalation study with anti-CD44v6 bivatuzumab mertansine in patients with incurable squamous cell carcinoma of the head and neck or esophagus. Clin Cancer Res. 2006;12(20 Pt 1):6064-6072.
46. Casucci M, Nicolis di Robilant B, Falcone L, et al. CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma. Blood. 2013;122(20):3461-3472.
47. Radhakrishnan SV, Luetkens T, Scherer SD, et al. CD229 CAR T cells eliminate multi- ple myeloma and tumor propagating cells without fratricide. Nat Commun. 2020;11 (1):798.
48. Madduri D, Berdeja JG, Usmani SZ, et al. CARTITUDE-1: phase 1b/2 study of cilta- cabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T cell therapy, in relapsed/refractory multi- ple myeloma. Blood. 2020;136 (Suppl 1):S22-25.
49. Cohen AD, Garfall AL, Stadtmauer EA, et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myelo- ma. J Clin Invest. 2019;129(6):2210-2221.
50. Munshi N, Anderson LD, Jr., Shah N, et al. Idecabtagene vicleucel (ide-cel; bb2121), a BCMA-targeted CAR T-cell therapy, in patients with relapsed and refractory multi- ple myeloma (RRMM): initial KarMMa results. J Clin Oncol. 2020;38(Suppl):S8503.
51.Yi Lin, Raje NS, Berdeja JG, et al. Idecabtagene vicleucel (ide-cel, bb2121), a BCMA-directed CAR T cell therapy, in patients with relapsed and refractory multi- ple myeloma: updated results from phase 1 CRB-401 study. Blood. 2020;136(Suppl 1):S26-27.
52. Zudaire E, Madduri D, Usmani S, et al. Translational analysis from CARTITUDE- 1, an ongoing phase 1b/2 study of JNJ-4528 BCMA-targeted CAR-T cell therapy in relapsed and/or refractory multiple myelo- ma (R/R MM), indicates preferential expan- sion of CD8+ T cell central memory cell subset. Blood. 2019;134(Suppl 1):S928.
53. Wang B, Zhao W, Liu J, et al. Long-term fol- low-up of a phase 1, first-in-human open- label study of LCAR-B38M, a structurally differentiated chimeric antigen receptor T (CAR-T) cell therapy targeting B-cell matu- ration antigen (BCMA), in patients (pts) with relapsed/refractory multiple myeloma (RRMM). Blood. 2019;134(Suppl 1):S579.
54. Cowan A, Pont M, Sather B, et al. Efficacy and safety of fully human Bcma CAR T cells in combination with a gamma secre- tase inhibitor to increase Bcma surface expression in patients with relapsed or refractory multiple myeloma. Blood. 2019;134(Suppl 1):S204.
55. Li C, Wang J, Wang D, et al. Efficacy and safety of fully human BCMA targeting CAR T-cell therapy in relapsed/refractory MM. Blood. 2019;134(Suppl 1):S929.
56. Mailankody S, Jakubowiak A, Htut M, et al. Orvacabtagene autoleucel (orva-cel), a B-cell maturation antigen (BCMA)-directed CAR T cell therapy for patients (pts) with relapsed/refractory multiple myeloma
31.
Boles KS, Stepp SE, Bennett M, Kumar V, Mathew PA. 2B4 (CD244) and CS1: novel members of the CD2 subset of the immunoglobulin superfamily molecules expressed on natural killer cells and other leukocytes. Immunol Rev. 2001;181:234- 249.
32. Chen J, Zhong MC, Guo H, et al. SLAMF7 is critical for phagocytosis of haematopoi- etic tumour cells via Mac-1 integrin. Nature. 2017;544(7651):493-497.
33. Gogishvili T, Danhof S, Prommersberger S, et al. SLAMF7-CAR T cells eliminate myeloma and confer selective fratricide of SLAMF7(+) normal lymphocytes. Blood. 2017;130(26):2838-2847.
34.De Salort J, Sintes J, Llinas L, Matesanz- Isabel J, Engel P. Expression of SLAM (CD150) cell-surface receptors on human B- cell subsets: from pro-B to plasma cells. Immunol Lett. 2011;134(2):129-136.
35. Mahtur R, Zhang Z, He J, et al. Universal SLAMF7-specific CAR T-cells as treatment or multiple myeloma Blood. 2017;130 (Suppl 1):S502.
36. Harada H, Kawano MM, Huang N, et al. Phenotypic difference of normal plasma cells from mature myeloma cells. Blood. 1993;81(10):2658-2663.
37. von Laer D, Corovic A, Vogt B, et al. Loss of CD38 antigen on CD34+CD38+ cells during short-term culture. Leukemia. 2000;14(5):947-948.
38. Drent E, Groen RW, Noort WA, et al. Pre- clinical evaluation of CD38 chimeric anti- gen receptor engineered T cells for the treatment of multiple myeloma. Haematologica. 2016;101(5):616-625.
39. Nijhof IS, Casneuf T, van Velzen J, et al. CD38 expression and complement inhibitors affect response and resistance to daratumumab therapy in myeloma. Blood. 2016;128(7):959-970.
40. Garcia-Guerrero E, Gotz R, Doose S, et al. Upregulation of CD38 expression on multi- ple myeloma cells by novel HDAC6 inhibitors is a class effect and augments the efficacy of daratumumab. Leukemia. 2021;35(1):201-214.
41. Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regu- lators. Nat Rev Mol Cell Biol. 2003;4(1):33- 45.
42. Zoller M. CD44: can a cancer-initiating cell profit from an abundantly expressed mole-
2064
haematologica | 2021; 106(8)


































































































   34   35   36   37   38