Page 212 - 2021_06-Haematologica-web
P. 212

C.W. Thorball et al.
Disclosure
CH is a full-time employee of F. Hoffmann–La Roche/Genentech; all other authors declare no conflicts of interest.
Contributions
CWT, JF, PJM, CSR, CB, CH and TOM contributed to the conception and design of the study; CWT, JF, PJM, FAS, DC, LM, CG, IT, SKH, MC, AR, MB, MH, PS, EB, HFG, CSR and CB contributed to the acquisition of data; CWT, TOM, CH, FAS, CB, CSR, NE, PM, and JF contributed to the analy- sis and interpretation of data; CWT, JF, CSR, CB and SW con- tributed to drafting the article and revising it critically for impor- tant intellectual content; all authors critically reviewed and approved the final manuscript.
Acknowledgments
The data are gathered by the Five Swiss University Hospitals, two Cantonal Hospitals, 15 affiliated hospitals and 36 private
physicians (listed in http://www.shcs.ch/180-health-care- providers). The datasets have been accessed through the National Institutes of Health (NIH) database for Genotypes and Phenotypes (dbGaP) under accession # phs000801. A full list of acknowledgements can be found in the supplementary note (Berndt SI et al., Nature Genet., 2013, PMID: 23770605).
Funding
This study has been financed within the framework of the Swiss HIV Cohort Study, supported by the Swiss National Science Foundation (grant #177499), by SHCS project #789 and by the SHCS research foundation. This work further bene- fited from the ANRS funding of both the Primo and Lymphovir cohorts. Foundation Monahan and Fulbright funded the stay of CB at the National Cancer Institute (NCI). The Genome-Wide Association Study (GWAS) of Non-Hodgkin Lymphoma (NHL) project was supported by the intramural program of the Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), NIH.
References
1.Patel P, Hanson DL, Sullivan PS, et al. Incidence of types of cancer among HIV- infected persons compared with the general population in the United States, 1992–2003. Ann Intern Med 2008;148(10):728-736.
2. Vogel M, Friedrich O, Lüchters G, et al. Cancer risk in HIV-infected individuals on HAART is largely attributed to oncogenic infections and state of immunocompetence. Eur J Med Res. 2011;16(3):101.
3. Robbins HA, Pfeiffer RM, Shiels MS, Li J, Hall HI, Engels EA. Excess cancers among HIV-infected people in the United States. J Natl Cancer Inst. 2015;107(4):dju503.
4. Clifford GM, Polesel J, Rickenbach M, et al. Cancer risk in the Swiss HIV Cohort Study: associations with immunodeficiency, smok- ing, and highly active antiretroviral therapy. J Natl Cancer Inst. 2005;97(6):425-432.
5. Engels EA. Non-AIDS-defining malignancies in HIV-infected persons: etiologic puzzles, epidemiologic perils, prevention opportuni- ties. AIDS. 2009;23(8):875-885.
6. Borges ÁH, Dubrow R, Silverberg MJ. Factors contributing to risk for cancer among HIV-infected individuals, and evidence that earlier combination antiretroviral therapy will alter this risk: Curr Opin HIV AIDS. 2014;9(1):34-40.
7. Guiguet M, Boué F, Cadranel J, Lang J-M, Rosenthal E, Costagliola D. Effect of immunodeficiency, HIV viral load, and anti- retroviral therapy on the risk of individual malignancies (FHDH-ANRS CO4): a prospective cohort study. Lancet Oncol. 2009;10(12):1152-1159.
8. Shepherd L, Ryom L, Law M, et al. Differences in virological and immunologi- cal risk factors for non-Hodgkin and Hodgkin lymphoma. J Natl Cancer Inst. 2018;110(6):598-607.
9. Hleyhel M, Belot A, Bouvier AM, et al. Risk of AIDS-defining cancers among HIV-1– infected patients in France between 1992 and 2009: results from the FHDH-ANRS CO4 Cohort. Clin Infect Dis. 2013;57(11):1638-1647.
10.Robbins HA, Pfeiffer RM, Shiels MS, Li J, Hall HI, Engels EA. Excess cancers among HIV-infected people in the United States. J Natl Cancer Inst. 2015;107(4):dju503.
11. Swerdlow SH. WHO classification of tumours of haematopoietic and lymphoid
tissues. International Agency for Research
on Cancer; 2017.
12. McLaren PJ, Carrington M. The impact of
host genetic variation on infection with HIV-
1. Nat Immunol. 2015;16(6):577-583.
13. Sud A, Kinnersley B, Houlston RS. Genome- wide association studies of cancer: current insights and future perspectives. Nat Rev
Cancer. 2017;17(11):692-704.
14. Cerhan JR, Berndt SI, Vijai J, et al. Genome-
wide association study identifies multiple susceptibility loci for diffuse large B cell lym- phoma. Nat Genet. 2014;46(11):1233-1238.
15. Conde L, Halperin E, Akers NK, et al. Genome-wide association study of follicular lymphoma identifies a risk locus at 6p21.32. Nat Genet. 2010;42(8):661-664.
16. Frampton M, da Silva Filho MI, Broderick P, et al. Variation at 3p24.1 and 6q23.3 influ- ences the risk of Hodgkin’s lymphoma. Nat Commun. 2013;4:2549.
17.Kumar V, Matsuo K, Takahashi A, et al. Common variants on 14q32 and 13q12 are associated with DLBCL susceptibility. J Hum Genet. 2011;56(6):436-439.
18. Moutsianas L, Enciso-Mora V, Ma YP, et al. Multiple Hodgkin lymphoma–associated loci within the HLA region at chromosome 6p21.3. Blood. 2011;118(3):670-674.
19.Skibola CF, Bracci PM, Halperin E, et al. Genetic variants at 6p21.33 are associated with susceptibility to follicular lymphoma. Nat Genet. 2009;41(8):873-875.
20. Urayama KY, Jarrett RF, Hjalgrim H, et al. Genome-wide association study of classical Hodgkin lymphoma and Epstein–Barr virus status–defined subgroups. J Natl Cancer Inst. 2012;104(3):240-253.
21. Vijai J, Kirchhoff T, Schrader KA, et al. Susceptibility loci associated with specific and shared subtypes of lymphoid malignan- cies. PLoS Genet. 2013;9(1):e1003220.
22. Skibola CF, Berndt SI, Vijai J, et al. Genome- wide association study identifies five sus- ceptibility loci for follicular lymphoma out- side the HLA region. Am J Hum Genet. 2014;95(4):462-471.
23. Vijai J, Wang Z, Berndt SI, et al. A genome- wide association study of marginal zone lymphoma shows association to the HLA region. Nat Commun. 2015;6:5751.
24. Tan DEK, Foo JN, Bei J-X, et al. Genome- wide association study of B cell non- Hodgkin lymphoma identifies 3q27 as a sus- ceptibility locus in the Chinese population.
Nat Genet. 2013;45(7):804-807.
25.Loh P-R, Danecek P, Palamara PF, et al.
Reference-based phasing using the Haplotype Reference Consortium panel. Nat Genet. 2016;48(11):1443-1448.
26. Durbin R. Efficient haplotype matching and storage using the positional Burrows– Wheeler transform (PBWT). Bioinformatics. 2014;30(9):1266-1272.
27. McCarthy S, Das S, Kretzschmar W, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016;48 (10):1279-1283.
28. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4(1):1-16.
29. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38(8):904-909.
30. The International HapMap 3 Consortium. Integrating common and rare genetic varia- tion in diverse human populations. Nature. 2010;467(7311):52-58.
31. Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen W-M. Robust rela- tionship inference in genome-wide associa- tion studies. Bioinformatics. 2010;26(22): 2867-2873.
32. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88(1): 76-82.
33. Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL. Advantages and pitfalls in the application of mixed-model association methods. Nat Genet. 2014;46(2):100-106.
34. Johnson JL, Abecasis GR. GAS Power Calculator: web-based power calculator for genetic association studies. bioRxiv. 2017;164343.
35. Rao SSP, Huntley MH, Durand NC, et al. A 3D Map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014;159(7):1665-1680.
36. Wang Y, Song F, Zhang B, et al. The 3D Genome Browser: a web-based browser for visualizing 3D genome organization and long-range chromatin interactions. Genome Biol. 2018;19(1):151.
37. GTEx Consortium. Genetic effects on gene expression across human tissues. Nature. 2017;550(7675):204-213.
2240
haematologica | 2021; 106(8)


































































































   210   211   212   213   214