Page 194 - 2021_06-Haematologica-web
P. 194
M. Martin-Izquierdo et al.
matin-modifier genes could be related to the evolution of MDS patients who received disease-modifying treatment before progression to sAML.
Disclosures
No conflicts of interest to disclose.
Contributions
MMI designed the experiments, performed targeted-deep sequencing experiments, analyzed the data and wrote the paper; MA designed the experiments, performed whole-exome sequencing experiments, contributed to interpret the results and wrote the paper; JMHS performed NGS data analysis and con- tributed to the experiment design; DT analyzed the whole- exome sequencing data; FLC, FR, EL, AMO, MM, JL, JSR, CO, JD, CA, JNR and GMN provided patient samples and clinical information and SSM and CMG contributed to perform the NGS experiments; RB contributed to data analysis, interpre- tation of the results and critically reviewed the manuscript and MDC and JMHR conceived the study, designed the experiments and wrote the manuscript. All authors discussed the results and revised the manuscript.
Acknowledgments
The authors would like to thank to Sara González, Irene Rodríguez, Teresa Prieto, Ma Ángeles Ramos, Filomena Corral, Ma Almudena Martín, Ana Díaz, Ana Simón, María del Pozo,
Isabel M Isidro, Vanesa Gutiérrez, Sandra Pujante and Ma Ángeles Hernández from the Cancer Research Center of Salamanca, Spain, for their technical support. We also thank to Teresa González and Alba Redondo-Guijo for providing patients samples and clinical information and we are deeply grateful to Miguel Quijada Álamo for his helpful suggestions and personal support.
Funding
This work was supported by grants from the Spanish Fondo de Investigaciones Sanitarias FIS PI18/01500, PI17/01741, Instituto de Salud Carlos III (ISCIII), Fondo de Investigación Sanitaria (Instituto de Salud Carlos III – Contratos Río Hortega (CM17/0017), European Regional Development Fund (ERDF), Una manera de hacer Europa, European Union Seventh Framework Programme [FP7/2007-2013] under Grant Agreement no306242-NGS-PTL, SYNtherapy: Synthetic Lethality for Personalized Therapy-based Stratification in Acute Leukemia (ERAPERMED2018-275); ISCIII (AC18/00093), Proyectos de Investigación del SACYL, Gerencia Regional de Salud de Castilla y León: GRS1850/A18, GRS1653/A17, and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC CB16/12/00233). MMI is supported by a pre- doctoral grant from the Junta de Castilla y León, and by the Fondo Social Europeo (JCYL-EDU/556/2019 PhD scholarship) and JMHS is supported by a research grant from Fundación Española de Hematología y Hemoterapia.
References
1.Cazzola M, Della Porta MG, Malcovati L. The genetic basis of myelodysplasia and its clinical relevance. Blood. 2013;122(25):4021- 4034.
2. Lindsley RC, Ebert BL. Molecular pathophys- iology of myelodysplastic syndromes. Annu Rev Pathol. 2013;8:21-47.
3. Tefferi A, Vardiman JW. Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia. 2008;22(1):14-22.
4.Greenberg PL, Tuechler H, Schanz J, et al. Revised international prognostic scoring sys- tem for myelodysplastic syndromes. Blood. 2012;120(12):2454-2465.
5. Shukron O, Vainstein V, Kundgen A, Germing U, Agur Z. Analyzing transforma- tion of myelodysplastic syndrome to second- ary acute myeloid leukemia using a large patient database. Am J Hematol. 2012 87(9):853-860.
6. Montalban-Bravo G, Garcia-Manero G. Myelodysplastic syndromes: 2018 update on diagnosis, risk-stratification and manage- ment. Am J Hematol. 2018;93(1):129-147.
7. Steensma DP, Bennett JM. The myelodys- plastic syndromes: diagnosis and treatment. Mayo Clin Proc. 2006;81(1):104-130.
8. Papaemmanuil E, Gerstung M, Malcovati L, et al. Clinical and biological implications of driver mutations in myelodysplastic syn- dromes. Blood. 2013;122(22):3616-3627.
9. Haferlach T, Nagata Y, Grossmann V, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28(2):241-247.
10.Abaigar M, Robledo C, Benito R, et al. Chromothripsis is a recurrent genomic abnormality in high-risk myelodysplastic syndromes. PLoS One. 2016; 11(10): e0164370.
11. Lindsley RC, Mar BG, Mazzola E, et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 2015; 125(9):1367-1376.
12. da Silva-Coelho P, Kroeze LI, Yoshida K, et al. Clonal evolution in myelodysplastic syn- dromes. Nat Commun. 2017;8:15099.
13. Sperling AS, Gibson CJ, Ebert BL. The genet- ics of myelodysplastic syndrome: from clonal haematopoiesis to secondary leukaemia. Nat Rev Cancer. 2017;17(1):5-19.
14. Walter MJ, Shen D, Ding L, et al. Clonal architecture of secondary acute myeloid leukemia. N Engl J Med. 2012;366(12):1090- 1098.
15. Makishima H, Yoshizato T, Yoshida K, et al. Dynamics of clonal evolution in myelodys- plastic syndromes. Nat Genet. 2017; 49(2):204-212.
16. Kim T, Tyndel MS, Kim HJ, et al. The clonal origins of leukemic progression of myelodys- plasia. Leukemia. 2017;31(9):1928-1935.
17. Stosch JM, Heumuller A, Niemoller C, et al. Gene mutations and clonal architecture in myelodysplastic syndromes and changes upon progression to acute myeloid leukaemia and under treatment. Br J Haematol. 2018;182(6):830-842.
18. Ibanez M, Carbonell-Caballero J, Such E, et al. The modular network structure of the mutational landscape of acute myeloid leukemia. PLoS One. 2018;13(10):e0202926.
19. Tamborero D, Rubio-Perez C, Deu-Pons J, et al. Cancer Genome Interpreter annotates the biological and clinical relevance of tumor alterations. Genome Med. 2018;10(1):25.
20. Reiter JG, Baretti M, Gerold JM, et al. An analysis of genetic heterogeneity in untreated cancers. Nat Rev Cancer. 2019;19(11):639- 650.
21. Thota S, Viny AD, Makishima H, et al. Genetic alterations of the cohesin complex genes in myeloid malignancies. Blood. 2014;124(11):1790-1798.
22. Viny AD, Levine RL. Cohesin mutations in myeloid malignancies made simple. Curr Opin Hematol. 2018;25(2):61-66.
23. Pellagatti A, Roy S, Di Genua C, et al. Targeted resequencing analysis of 31 genes commonly mutated in myeloid disorders in serial samples from myelodysplastic syn- drome patients showing disease progression. Leukemia. 2016;30(1):247-250.
24. Takahashi K, Jabbour E, Wang X, et al. Dynamic acquisition of FLT3 or RAS alter- ations drive a subset of patients with lower risk MDS to secondary AML. Leukemia. 2013;27(10):2081-2083.
25. Meggendorfer M, de Albuquerque A, Nadarajah N, et al. Karyotype evolution and acquisition of FLT3 or RAS pathway alter- ations drive progression of myelodysplastic syndrome to acute myeloid leukemia. Haematologica. 2015;100(12):e487-490.
26.Badar T, Patel KP, Thompson PA, et al. Detectable FLT3-ITD or RAS mutation at the time of transformation from MDS to AML predicts for very poor outcomes. Leuk Res. 2015;39(12):1367-1374.
27. Xu F, Han R, Zhang J, et al. The Role of FLT3- ITD Mutation on de novo MDS in Chinese population. Clin Lymphoma Myeloma Leuk. 2019;19(2):e107-e115.
28. Walter MJ, Shen D, Shao J, et al. Clonal diver- sity of recurrently mutated genes in myelodysplastic syndromes. Leukemia. 2013;27(6):1275-1282.
29. Miller CA, McMichael J, Dang HX, et al. Visualizing tumor evolution with the fishplot package for R. BMC Genomics. 2016; 17(1):880.
30. Mazumdar C, Shen Y, Xavy S, et al. Leukemia-associated cohesin mutants domi- nantly enforce stem cell programs and impair human hematopoietic Progenitor differentia- tion. Cell Stem Cell. 2015; 17(6):675-688.
31. Mondal G, Stevers M, Goode B, Ashworth A, Solomon DA. A requirement for STAG2 in
2222
haematologica | 2021; 106(8)

