Page 174 - 2021_06-Haematologica-web
P. 174
Z. Shah et al.
numbers of the primitive cells may be provided by the massive EHT in the yolk sac vasculature.
The detection of the progenitor-independent primitive blood cells was possible only in cytokine-free culture con- ditions because otherwise, it would be difficult to distin- guish progenitor-derived from HE-derived blood cells. Our findings further emphasize the value of the in vitro dif- ferentiation of hESC as a practical tool for studying early hematopoiesis in humans.
Disclosures
No conflicts of interest to disclose.
Contributions
IMS designed and directed the study; ZSh co-designed the study, created the mutant cell lines, and performed most of the experiments;CF and HU performed a number of CFU-C assays, qRT-PCR, and VEGF-independent differentiation; BZ
provided the experimental data on Activin/Nodal signaling inhi- bition; ESF conducted immunocytofluorescent staining; CW pre- pared cell samples for the RNA-seq analysis; VR, CW, PV per- formed bioinformatics analyses; IMS wrote the manuscript with input from ESF, ZSh, and PV.
Acknowledgments
The authors thank Dr. Kenjiro Adachi (MPI Münster) for pro- viding the PiggyBac plasmids, Dr. Guangjin Pan (GIBH CAS) for providing H1 hESC line, and Andrew Sonin (MIPT) for assistance with bioinformatics analyses.
Funding
This work was supported by the National Key R&D Program of China 2017YFA0103101, Science and Technology Planning Project of Guangdong Province, China 2017B030314056, the National Basic Research Program of China 2015CB964900, the Guangdong Province Leading Talent Program 2014-2018 (to IMS).
References
1.Palis J, Robertson S, Kennedy M, Wall C, Keller G. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development. 1999;126(22):5073-5084.
2. Ferkowicz MJ, Yoder MC. Blood island for- mation: longstanding observations and modern interpretations. Exp Hematology. 2005;33(9):1041-1047.
3. Wong PM, Chung SW, Reicheld SM, Chui DH. Hemoglobin switching during murine embryonic development: evidence for 2 populations of embryonic erythropoietic progenitor cells. Blood. 1986;67(3):716-721.
4. Porcher C, Chagraoui H, Kristiansen MS. SCL/TAL1: a multifaceted regulator from blood development to disease. Blood. 2017;129(15):2051-2060.
5. Kingsley PD, Malik J, Fantauzzo KA, Palis J. Yolk sac-derived primitive erythroblasts enucleate during mammalian embryogene- sis. Blood. 2004;104(1):19-25.
6. Ramsay RG, Gonda TJ. MYB function in normal and cancer cells. Nat Rev Cancer. 2008;8(7):523-534.
7. Tober J, McGrath KE, Palis J. Primitive ery- thropoiesis and megakaryopoiesis in the yolk sac are independent of c-myb. Blood. 2008;111(5):2636-2639.
8. Mucenski ML, McLain K, Kier AB, et al. A functional c-myb gene is required for nor- mal murine fetal hepatic hematopoiesis. Cell. 1991;65(4):677-689.
9. Vanhee S, De Mulder K, Van Caeneghem Y, et al. In vitro human embryonic stem cell hematopoiesis mimics MYB-independent yolk sac hematopoiesis. Haematologica ,2015;100(2):157-166.
10. Buchrieser J, James W, Moore MD. Human induced pluripotent stem cell-derived macrophages share ontogeny with MYB- independent tissue-resident macrophages. Stem Cell Rep. 2017;8(2):334-345.
11. Jacobs SM, Gorse KM, Westin EH. Identification of a second promoter in the human c-myb proto-oncogene. Oncogene. 1994;9(1):227-235.
12. Thompson MA, Flegg R, Westin EH, Ramsay RG. Microsatellite deletions in the
c-myb transcriptional attenuator region associated with over-expression in colon tumor cell lines. Oncogene. 1997; 14(14):1715-1723.
13. Salvagiotto G, Burton S, Daigh CA, Rajesh D, Slukvin II, Seay NJ. A defined, feeder- free, serum-free system to generate in vitro hematopoietic progenitors and differentiat- ed blood cells from hESCs and hiPSCs. PLoS One. 2011;6(3):e17829.
14. Niwa A, Heike T, Umeda K, et al. A novel serum-free monolayer culture for orderly hematopoietic differentiation of human pluripotent cells via mesodermal progeni- tors. PLoS One. 2011;6(7):e22261.
15.Uenishi G, Theisen D, Lee J-H, et al. Tenascin C promotes hematoendothelial development and T lymphoid commitment from human pluripotent stem cells in chemically defined conditions. Stem Cell Reports. 2014;3(6):1073-1084.
16. Malik J, Kim AR, Tyre KA, Cherukuri AR, Palis J. Erythropoietin critically regulates the terminal maturation of murine and human primitive erythroblasts. Haematologica. 2013;98(11):1778-1787.
17. Kennedy M, Awong G, Sturgeon CM, et al. T lymphocyte potential marks the emer- gence of definitive hematopoietic progeni- tors in human pluripotent stem cell differ- entiation cultures. Cell Rep. 2012; 2(6):1722-1735.
18. Sturgeon CM, Ditadi A, Awong G, Kennedy M, Keller G. Wnt signaling con- trols the specification of definitive and primitive hematopoiesis from human pluripotent stem cells. Nat Biotechnol. 2014;32(6):554-561.
19. Scheicher R, Hoelbl-Kovacic A, Bellutti F, et al. CDK6 as a key regulator of hematopoi- etic and leukemic stem cell activation. Blood. 2015;125(1):90-101.
20.Bunz F, Dutriaux C, Lengauer C, et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science. 1998;282(5393):1497-1501.
21. Bluteau O, Langlois T, Rivera-Munoz P, et al. Developmental changes in human megakaryopoiesis. J Thromb Haemost. 2013;11(9):1730-1741.
22. Soza-Ried C, Hess I, Netuschil N, Schorpp M, Boehm T. Essential role of c-myb in definitive hematopoiesis is evolutionarily conserved. Proc Natl Acad Sci USA. 2010;107(40):17304-17308.
23. Clarke D, Vegiopoulos A, Crawford A, Mucenski M, Bonife, C, Frampton J. In vitro differentiation of c-myb–/– ES cells reveals that the colony forming capacity of unilineage macrophage precursors and myeloid progenitor commitment are c- Myb independent. Oncogene. 2000; 19(30):3343-3351.
24. Sturgeon CM, Ditadi A, Clarke RL, Keller G. Defining the path to hematopoietic stem cells. Nat Biotechnol. 2013;31(5):416-418.
25.Adachi K, Nikaido I, Ohta H, et al. Context-dependent wiring of Sox2 regula- tory networks for self-renewal of embryon- ic and trophoblast stem cells. Mol Cell. 2013;52(3):380-392.
26. Wang X, Angelis N, Thein SL. MYB – a reg- ulatory factor in hematopoiesis. Gene. 2018;665:6-17.
27. Bies J, Mukhopadhyaya R, Pierce J, Wolff L. Only late, non-mitotic stages of granulo- cyte differentiation in 32Dcl3 cells are blocked by ectopic expression of murine c- myb and its truncated forms. Cell Growth Differ. 1995;6(1):59-68.
28. Ivanovs A, Rybtsov S, Ng ES, Stanley EG, Elefanty AG, Medvinsky A. Human haematopoietic stem cell development: from the embryo to the dish. Development. 2017;144(13):2323-2337.
29. Moriyama A, Inohaya K, Maruyama K, Kudo A. Bef medaka mutant reveals the essential role of c-myb in both primitive and definitive hematopoiesis. Dev. Biol. 2010;345(2):133-143.
30. Lipsick JS. The c-MYB story – is it defini- tive? Proc Natl Acad Sci USA. 2010; 107(40):17067-17068.
31. Tavian M, Peault B. Embryonic develop- ment of the human hematopoietic system. Int J Dev Biol. 2005;49(2-3):243-250.
32. McGrath KE, Koniski AD, Malik J, Palis J. Circulation is established in a stepwise pat- tern in the mammalian embryo. Blood. 2003;101(5):1669-1676.
2202
haematologica | 2021; 106(8)