Page 102 - 2021_06-Haematologica-web
P. 102
M. Swaminathan et al. References
1. Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002;100(5):1532-1542.
2. Daver N, Schlenk RF, Russell NH, Levis MJ. Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia. 2019;33(2):299-312.
3. Nagel G, Weber D, Fromm E, et al. Epidemiological, genetic, and clinical char- acterization by age of newly diagnosed acute myeloid leukemia based on an aca- demic population-based registry study (AMLSG BiO). Ann Hematol. 2017; 96(12):1993-2003.
4. Frohling S, Schlenk RF, Breitruck J, et al. Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML Study Group Ulm. Blood. 2002;100(13): 4372-4380.
5. Kottaridis PD, Gale RE, Frew ME, et al. The presence of a FLT3 internal tandem duplica- tion in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemothera- py: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood. 2001;98(6):1752-1759.
6.Schnittger S, Schoch C, Dugas M, et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: corre- lation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and useful- ness as a marker for the detection of minimal residual disease. Blood. 2002;100(1):59-66.
7. Fiedler W, Kayser S, Kebenko M, et al. A phase I/II study of sunitinib and intensive chemotherapy in patients over 60 years of age with acute myeloid leukaemia and acti- vating FLT3 mutations. Br J Haematol. 2015;169(5):694-700.
8. Pratz KW, Cortes J, Roboz GJ, et al. A phar- macodynamic study of the FLT3 inhibitor KW-2449 yields insight into the basis for clinical response. Blood. 2009;113(17): 3938-3946.
9. Smith BD, Levis M, Beran M, et al. Single- agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood. 2004; 103(10): 3669-3676.
10.Stone RM, DeAngelo DJ, Klimek V, et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood. 2005;105(1):54-60.
11. Stone RM, Mandrekar SJ, Sanford BL, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017;377(5):454-464.
12. Wander SA, Levis MJ, Fathi AT. The evolv- ing role of FLT3 inhibitors in acute myeloid leukemia: quizartinib and beyond. Ther Adv Hematol. 2014;5(3):65-77.
13.Daver N, Cortes J, Ravandi F, et al. Secondary mutations as mediators of resist- ance to targeted therapy in leukemia. Blood. 2015;125(21):3236-3245.
14.Cortes J, Perl AE, Dohner H, et al. Quizartinib, an FLT3 inhibitor, as monotherapy in patients with relapsed or refractory acute myeloid leukaemia: an open-label, multicentre, single-arm, phase 2 trial. Lancet Oncol. 2018;19(7):889-903.
15. Perl AE, Altman JK, Cortes J, et al. Selective inhibition of FLT3 by gilteritinib in relapsed or refractory acute myeloid leukaemia: a multicentre, first-in-human, open-label, phase 1-2 study. Lancet Oncol. 2017; 18(8):1061-1075.
16. Cortes JE, Khaled S, Martinelli G, et al. Quizartinib versus salvage chemotherapy in relapsed or refractory FLT3-ITD acute myeloid leukaemia (QuANTUM-R): a mul- ticentre, randomised, controlled, open- label, phase 3 trial. Lancet Oncol. 2019; 20(7):984-997.
17.Perl AE, Martinelli G, Cortes JE, et al. Gilteritinib or chemotherapy for relapsed or refractory FLT3-mutated AML. N Engl J Med. 2019;381(18):1728-1740.
18. Ravandi F, Alattar ML, Grunwald MR, et al. Phase 2 study of azacytidine plus sorafenib in patients with acute myeloid leukemia and FLT-3 internal tandem duplication mutation. Blood. 2013;121(23):4655-4662.
19. Strati P, Kantarjian H, Ravandi F, et al. Phase I/II trial of the combination of midostaurin (PKC412) and 5-azacytidine for patients with acute myeloid leukemia and myelodysplastic syndrome. Am J Hematol. 2015;90(4):276-281.
20. Gallogly MM, Tomlinson BK, Bunner P, et al. A phase II study of midostaurin and 5- azacitidine for elderly patients with acute myeloid leukemia. Blood. 2017;130(Suppl 1):1332.
21. Ohanian M, Garcia-Manero G, Levis M, et al. Sorafenib combined with 5-azacytidine in older patients with untreated FLT3-ITD mutated acute myeloid leukemia. Am J Hematol. 2018;93(9):1136-1141.
22. Cheson BD, Bennett JM, Kopecky KJ, et al. Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J Clin Oncol.
2003;21(24):4642-4649.
23.Thall PF, Simon RM, Estey EH. Bayesian
sequential monitoring designs for single- arm clinical trials with multiple outcomes. Stat Med. 1995;14(4):357-379.
24. DiNardo CD, Pratz K, Pullarkat V, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133(1):7-17.
25. Mali RS, Lasater EA, Doyle K, et al. FLT3- ITD activation mediates resistance to the BCL-2 selective antagonist, venetoclax, in FLT3-ITD mutant AML models. Blood. 2017;130(Suppl 1):1348.
26. Zhang Q, Pan R, Han L, et al. Mechanisms of acquired resistance to venetoclax in pre- clinical AML models. Blood. 2015; 126(23):328-328.
27. Chyla B, Daver N, Doyle K, et al. Genetic biomarkers of sensitivity and resistance to venetoclax monotherapy in patients with relapsed acute myeloid leukemia. Am J Hematol. 2018;93(8):E202-E205.
28. Stahl M, DeVeaux M, Montesinos P, et al. Hypomethylating agents in relapsed and refractory AML: outcomes and their predic- tors in a large international patient cohort. Blood Adv. 2018;2(8):923-932.
29. Cortes JE, Perl AE, Dombret H, et al. Final results of a phase 2 open-label, monothera- py efficacy and safety study of quizartinib (AC220) in patients ≥ 60 years of age with FLT3 ITD positive or negative relapsed/refractory acute myeloid leukemia. Blood. 2012;120(21):48-48.
30. Albers C, Leischner H, Verbeek M, et al. The secondary FLT3-ITD F691L mutation induces resistance to AC220 in FLT3-ITD+ AML but retains in vitro sensitivity to PKC412 and sunitinib. Leukemia. 2013; 27(6):1416-1418.
31. Smith CC, Lin K, Stecula A, Sali A, Shah NP. FLT3 D835 mutations confer differen- tial resistance to type II FLT3 inhibitors. Leukemia. 2015;29(12):2390-2392.
32. Smith CC, Paguirigan A, Jeschke GR, et al. Heterogeneous resistance to quizartinib in acute myeloid leukemia revealed by single- cell analysis. Blood. 2017;130(1):48-58.
33. Alvarado Y, Kantarjian HM, Luthra R, et al. Treatment with FLT3 inhibitor in patients with FLT3-mutated acute myeloid leukemia is associated with development of secondary FLT3-tyrosine kinase domain mutations. Cancer. 2014;120(14):2142- 2149.
34. Levis MJ, Perl AE, Martinelli G, et al. Effect of gilteritinib on survival in patients with FLT3-mutated (FLT3mut+) relapsed/refrac- tory (R/R) AML who have common AML co-mutations or a high FLT3-ITD allelic ratio. J Clin Oncol. 2019;37(15_suppl):7000.
2130
haematologica | 2021; 106(8)

