Page 56 - 2021_07-Haematologica-web
P. 56
J. Hu et al.
ment may sensitize tumor cells to GLS1 inhibitors. Taken together, our findings support further investigation of MK1775 and CB-839 combination in clinical settings for T-ALL treatments, given that the respective monotherapy has been evaluated in multiple clinical trials and shows tolerable toxicity.39,45,46
Disclosures
No conflicts of interest to disclose.
Contributions
HL conceived and designed the study; HL supervised the study. HL, JH and TW wrote the manuscript; JH and TW performed the majority of experiments; JX, LW, HS, JJ, MY, JW and DW pro- vided technical support; SW, PL and FZ provided primary T-ALL samples; YL helped with data analysis of primary T-ALL samples; HL and GQ analyzed and interpreted the data.
Acknowledgments
The authors would like to thank Liu Lab members for technical support and critical reading of the manuscript, the Core Facility of Medical Research Institute at Wuhan University for immuno- fluorescence, flow cytometry and histological analysis.
Funding
This research was supported by grants from National Key R&D Program of China (2017YFA0505600 to GQ), National Natural Science Foundation of China (81770177, 81970152 to HL, 81803003 to MY), National Science Fund for Distinguished Young Scholars (81725013 to GQ), Hubei Provincial Natural Science Fund for Distinguished Young Scholars (2017CFA072 to HL), Hubei Provincial Natural Science Fund for Creative Research Groups (2018CFA018 to GQ), and Innovative Research Grants from Wuhan University (2042019kf0338 to HL and 2042017kf0282 to GQ).
References
1.Belver L, Ferrando A. The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat Rev Cancer. 2016;16(8):494- 507.
2. Van Vlierberghe P, Ferrando A. The molecu- lar basis of T cell acute lymphoblastic leukemia. J Clin Invest. 2012;122(10):3398- 3406.
3. Hunger SP, Lu X, Devidas M, et al. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the Children's Oncology Group. J Clin Oncol. 2012; 30(14):1663-1669.
4. Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia. Lancet. 2013; 381(9881):1943-1955.
5.Bhojwani D, Pui C-H. Relapsed childhood acute lymphoblastic leukaemia. Lancet Oncol. 2013;14(6):e205-e217.
6. Litzow MR, Ferrando AA. How I treat T-cell acute lymphoblastic leukemia in adults. Blood. 2015;126(7):833-841.
7. Palomero T, Ferrando A. Therapeutic target- ing of NOTCH1 signaling in T-cell acute lymphoblastic leukemia. Clin Lymphoma Myeloma. 2009;9(Suppl 3):S205-S210.
8. Chen T, Stephens PA, Middleton FK, Curtin NJ. Targeting the S and G2 checkpoint to treat cancer. Drug Discov Today. 2012;17(5- 6):194-202.
9.Otto T, Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer. 2017;17(2):93-115.
10. Matheson CJ, Backos DS, Reigan P. Targeting WEE1 kinase in cancer. Trends Pharmacol Sci. 2016;37(10):872-881.
11. Magnussen GI, Holm R, Emilsen E, Rosnes AK, Slipicevic A, Florenes VA. High expres- sion of Wee1 is associated with poor dis- ease-free survival in malignant melanoma: potential for targeted therapy. PLoS One. 2012;7(6):e38254.
12. Mir SE, De Witt Hamer PC, Krawczyk PM, et al. In silico analysis of kinase expression identifies WEE1 as a gatekeeper against mitotic catastrophe in glioblastoma. Cancer Cell. 2010;18(3):244-257.
13.Ghelli Luserna Di Rora A, Beeharry N, Imbrogno E, et al. Targeting WEE1 to enhance conventional therapies for acute lymphoblastic leukemia. J Hematol Oncol. 2018;11(1):99.
14. Slipicevic A, Holth A, Hellesylt E, Trope CG,
Davidson B, Florenes VA. Wee1 is a novel independent prognostic marker of poor sur- vival in post-chemotherapy ovarian carcino- ma effusions. Gynecol Oncol. 2014; 135(1):118-124.
15. Magnussen GI, Hellesylt E, Nesland JM, Trope CG, Florenes VA, Holm R. High expression of wee1 is associated with malig- nancy in vulvar squamous cell carcinoma patients. BMC Cancer. 2013;13:288.
16. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23(1):27-47.
17. Zhang J, Pavlova NN, Thompson CB. Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine. EMBO J. 2017;36(10):1302-1315.
18.Palomero T, Sulis ML, Cortina M, et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med. 2007;13(10):1203-1210.
19. Herranz D, Ambesi-Impiombato A, Sudderth J, et al. Metabolic reprogramming induces resistance to anti-NOTCH1 thera- pies in T cell acute lymphoblastic leukemia. Nat Med. 2015;21(10):1182-1189.
20. Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: cell biology, physiol- ogy, and clinical opportunities. J Clin Invest. 2013;123(9):3678-3684.
21. Wang Z, Hu Y, Xiao D, et al. Stabilization of Notch1 by the Hsp90 chaperone is crucial for T-cell leukemogenesis. Clin Cancer Res. 2017;23(14):3834-3846.
22. Su H, Hu J, Huang L, et al. SHQ1 regulation of RNA splicing is required for T-lym- phoblastic leukemia cell survival. Nat Commun. 2018;9(1):4281.
23. Hirai H, Iwasawa Y, Okada M, et al. Small- molecule inhibition of Wee1 kinase by MK- 1775 selectively sensitizes p53-deficient tumor cells to DNA-damaging agents. Mol Cancer Ther. 2009;8(11):2992-3000.
24. YangC,HaoR,DuX,WangQ,DengY,Sun R. Response to different dietary carbohy- drate and protein levels of pearl oysters (Pinctada fucata martensii) as revealed by GC-TOF/MS-based metabolomics. Sci Total Environ. 2019;650(Pt 2):2614-2623.
25.Yue M, Jiang J, Gao P, Liu H, Qing G. Oncogenic MYC activates a feedforward regulatory loop promoting essential amino acid metabolism and tumorigenesis. Cell Rep. 2017;21(13):3819-3832.
26.Kind T, Wohlgemuth G, Lee DY, et al. FiehnLib: mass spectral and retention index libraries for metabolomics based on quadru-
ple and time-of-flight gas chromatogra- phy/mass spectrometry. Anal Chem. 2009; 81(24):10038-10048.
27. HuY,SuH,LiuC,etal.DEPTORisadirect NOTCH1 target that promotes cell prolifer- ation and survival in T-cell leukemia. Oncogene. 2017;36(8):1038-1047.
28.Andersson A, Ritz C, Lindgren D, et al. Microarray-based classification of a consec- utive series of 121 childhood acute leukemias: prediction of leukemic and genetic subtype as well as of minimal resid- ual disease status. Leukemia. 2007; 21(6):1198-1203.
29. Coustan-Smith E, Song G, Clark C, et al. New markers for minimal residual disease detection in acute lymphoblastic leukemia. Blood. 2011;117(23):6267-6276.
30. Homminga I, Pieters R, Langerak AW, et al. Integrated transcript and genome analyses reveal NKX2-1 and MEF2C as potential oncogenes in T cell acute lymphoblastic leukemia. Cancer Cell. 2011;19(4):484-497.
31. Ghandi M, Huang FW, Jane-Valbuena J, et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature. 2019;569(7757):503-508.
32. Liu Y, Easton J, Shao Y, et al. The genomic landscape of pediatric and young adult T-lin- eage acute lymphoblastic leukemia. Nat Genet. 2017;49(8):1211-1218.
33. Delmore JE, Issa GC, Lemieux ME, et al. BET bromodomain inhibition as a therapeu- tic strategy to target c-Myc. Cell. 2011; 146(6):904-917.
34.Puissant A, Frumm SM, Alexe G, et al. Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov. 2013;3(3):308-323.
35. Kourtis N, Lazaris C, Hockemeyer K, et al. Oncogenic hijacking of the stress response machinery in T cell acute lymphoblastic leukemia. Nat Med. 2018;24(8):1157-1166.
36. Sanda T, Lawton LN, Barrasa MI, et al. Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia. Cancer Cell. 2012; 22(2):209-221.
37. Hsieh AL, Walton ZE, Altman BJ, Stine ZE, Dang CV. MYC and metabolism on the path to cancer. Semin Cell Dev Biol. 2015;43:11- 21.
38. Song M, Kim SH, Im CY, Hwang HJ. Recent development of small molecule glutaminase inhibitors. Curr Top Med Chem. 2018;18(6): 432-443.
39.DeMichele A, Harding JJ, Telli ML, et al.
1826
haematologica | 2021; 106(7)