Page 217 - 2021_07-Haematologica-web
P. 217
Fetal hemoglobin induction with a DNMT1 inhibitor
3560-3569.
6. Masuda T, Wang X, Maeda M, et al.
Transcription factors LRF and BCL11A inde- pendently repress expression of fetal hemo- globin. Science. 2016;351(6270):285-289.
7. Mabaera R, West RJ, Conine SJ, et al. A cell stress signaling model of fetal hemoglobin induction: what doesn't kill red blood cells may make them stronger. Exp Hematol. 2008;36(9):1057-1072.
8. Shearstone JR, Pop R, Bock C, et al. Global DNA demethylation during mouse erythro- poiesis in vivo. Science. 2011;334(6057):799- 802.
9. Higgs DR, Wood WG. Genetic complexity in sickle cell disease. Proc Natl Acad Sci U S A. 2008;105(33):11595-11596.
10. Perrine RP, Brown MJ, Clegg JB, Weatherall DJ, May A. Benign sickle-cell anaemia. Lancet. 1972;2(7788):1163-1167.
11.Lanzkron S, Strouse JJ, Wilson R, et al. Systematic review: hydroxyurea for the treatment of adults with sickle cell disease. Ann Intern Med. 2008;148(12):939-955.
12.Steinberg MH, Barton F, Castro O, et al. Effect of hydroxyurea on mortality and mor- bidity in adult sickle cell anemia: Risks and benefits up to 9 years of treatment. JAMA. 2003;289(13):1645-1651.
13. Maier-Redelsperger M, de Montalembert M, Flahault A, et al. Fetal hemoglobin and F-cell responses to long-term hydroxyurea treat- ment in young sickle cell patients. Blood. 1998;91(12):4472-4479.
14. DeSimone J, Heller P, Hall L, Zwiers D. 5- Azacytidine stimulates fetal hemoglobin synthesis in anemic baboons. Proc Natl Acad Sci U S A. 1982;79(14):4428-4431.
15. Dover GJ, Charache SH, Boyer SH, Talbot J, Smith KD. 5-Azacytidine increases fetal hemoglobin production in a patient with sickle cell disease. Prog Clin Biol Res. 1983;134:475-488.
16. Ley TJ, Anagnou NP, Noguchi CT, et al. DNA methylation and globin gene expres- sion in patients treated with 5-azacytidine. Prog Clin Biol Res. 1983;134:457-474.
apeutic targets in sickle cell disease. Proc Natl Acad Sci U S A. 2010;107(28):12617- 12622.
23. Li H, Xie W, Gore ER, et al. Development of phenotypic screening assays for gamma-glo- bin induction using primary human bone marrow day 7 erythroid progenitor cells. J Biomol Screen. 2013;18(10):1212-1222.
24. Torrealba-de Ron AT, Papayannopoulou T, Knapp MS, et al. Perturbations in the ery- throid marrow progenitor cell pools may play a role in the augmentation of HbF by 5- azacytidine. Blood. 1984;63(1):201-210.
25.Akpan I, Banzon V, Ibanez V, et al. Decitabine increases fetal hemoglobin in Papio anubis by increasing gamma-globin gene transcription. Exp Hematol. 2010; 38(11):989-993.e1.
26.Chin J, Singh M, Banzon V, et al. Transcriptional activation of the gamma- globin gene in baboons treated with decitabine and in cultured erythroid progen- itor cells involves different mechanisms. Exp Hematol. 2009;37(10):1131-1142.
27. Wood RJ, McKelvie JC, Maynard-Smith MD, Roach PL. A real-time assay for CpG- specific cytosine-C5 methyltransferase activity. Nucleic Acids Res. 2010;38(9):e107.
28. Adams ND, Benowitz AB, Rueda Benede ML, et al. inventors. Substituted Pyridines as Inhibitors of DNMT1. Patent WO/2017/ 216727. 2017.
29. Santi DV, Norment A, Garrett CE. Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5- azacytosine. Proc Natl Acad Sci U S A. 1984; 81(22):6993-6997.
30. Oka M, Meacham AM, Hamazaki T, et al. De novo DNA methyltransferases Dnmt3a and Dnmt3b primarily mediate the cytotox- ic effect of 5-aza-2′-deoxycytidine. Oncogene. 2005;24(19):3091-3099.
31. Mabaera R, Richardson CA, Johnson K, et al. Developmental- and differentiation-specific patterns of human γ- and β-globin promoter DNA methylation. Blood. 2007;110(4):1343- 1352.
32.Ghoshal K, Datta J, Majumder S, et al. 5- Aza-Deoxycytidine induces selective degra- dation of DNA methyltransferase 1 by a proteasomal pathway that requires the KEN box, bromo-adjacent homology domain, and nuclear localization signal. Mol Cell Biol. 2005;25(11):4727-4741.
mal degradation of the free enzyme. Nucleic
Acids Res. 2010;38(13):4313-4324.
37. Zhang Z-M, Lu R, Wang P, et al. Structural basis for DNMT3A-mediated de novo DNA methylation. Nature. 2018;554(7692):387-
391.
38. Sledziewski A, Devos T, Kole R (inventors).
Oligonucleotide inhibitors of DNA methyl- transferases and their use in treating dis- eases. Patent WO2014011573. 2015.
39. Hu J, Liu J, Xue F, et al. Isolation and func- tional characterization of human erythrob- lasts at distinct stages: implications for understanding of normal and disordered erythropoiesis in vivo. Blood. 2013;121(16): 3246-3253.
40. Wu LC, Sun CW, Ryan TM, et al. Correction of sickle cell disease by homologous recom- bination in embryonic stem cells. Blood. 2006;108(4):1183-1188.
41.Charache S, Dover G, Smith K, et al. Treatment of sickle cell anemia with 5-aza- cytidine results in increased fetal hemoglo- bin production and is associated with non- random hypomethylation of DNA around the gamma-delta-beta-globin gene complex. Proc Natl Acad Sci U S A. 1983;80(15):4842- 4846.
42. Koshy M, Dorn L, Bressler L, et al. 2-Deoxy 5-azacytidine and fetal hemoglobin induc- tion in sickle cell anemia. Blood. 2000;96(7):2379-2384.
43. Nienhuis AW, Ley TJ, Humphries RK, Young NS, Dover G. Pharmacological manipulation of fetal hemoglobin synthesis in patients with severe beta-thalassemia. Ann N Y Acad Sci. 1985;445:198-211.
44. Letvin NL, Linch DC, Beardsley GP, et al. Influence of cell cycle phase-specific agents on simian fetal hemoglobin synthesis. J Clin Invest. 1985;75(6):1999-2005.
45. Molokie R, Lavelle D, Gowhari M, et al. Oral tetrahydrouridine and decitabine for non-cytotoxic epigenetic gene regulation in sickle cell disease: a randomized phase 1 study. PLoS Med. 2017;14(9):e1002382.
46.Van Der Ploeg LHT, Flavell RA. DNA methylation in the human gamma delta beta-globin locus in erythroid and nonery- throid tissues. Cell. 1980;19(4):947-958.
47. Pop R, Shearstone JR, Shen Q, et al. A key commitment step in erythropoiesis is syn- chronized with the cell cycle clock through mutual inhibition between PU.1 and S- phase progression. PLoS Biol. 2010;8(9): e1000484.
48.Gautier E-F, Ducamp S, Leduc M, et al. Comprehensive proteomic analysis of human erythropoiesis. Cell Rep. 2016;16(5): 1470-1484.
49. Mavilio F, Giampaolo A, Care A, et al. Molecular mechanisms of human hemoglo- bin switching: selective undermethylation and expression of globin genes in embryon- ic, fetal, and adult erythroblasts. Proc Natl Acad Sci U S A. 1983;80(22):6907-6911.
50. van den Bosch J, Lubbert M, Verhoef G, Wijermans PW. The effects of 5-aza-2'- deoxycytidine (Decitabine) on the platelet count in patients with intermediate and high-risk myelodysplastic syndromes. Leuk Res. 2004;28(8):785-790.
17. Lowrey CH, Nienhuis AW. Brief report: treatment with azacitidine of patients with end-stage +¦- thalassemia. N Engl J Med. 1993;329(12):845-848.
18. Saunthararajah Y, Hillery CA, Lavelle D, et al. Effects of 5-aza-2′-deoxycytidine on fetal hemoglobin levels, red cell adhesion, and hematopoietic differentiation in patients with sickle cell disease. Blood. 2003;102(12): 3865-3870.
33.
Robaina MC, Mazzoccoli L, Arruda VO, et al. Deregulation of DNMT1, DNMT3B and miR-29s in Burkitt lymphoma suggests novel contribution for disease pathogenesis. Exp Mol Pathol. 2015;98(2):200-207.
19. Reinhardt D, Haase D, Schoch C, et al. Hemoglobin F in myelodysplastic syn- drome. Ann Hematol. 1998;76(3-4):135-138.
20. Lubbert M, Ihorst G, Sander PN, et al. Elevated fetal haemoglobin is a predictor of better outcome in MDS/AML patients receiving 5-aza-2'-deoxycytidine (Decitabine). Br J Haematol. 2017;176(4): 609-617.
21. Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet. 2018;19(2):81-92.
22. Bradner JE, Mak R, Tanguturi SK, et al. Chemical genetic strategy identifies histone deacetylase 1 (HDAC1) and HDAC2 as ther-
34.Palii SS, Van Emburgh BO, Sankpal UT, Brown KD, Robertson KD. DNA methyla- tion inhibitor 5-aza-2′-deoxycytidine induces reversible genome-wide DNA dam- age that is distinctly influenced by DNA methyltransferases 1 and 3B. Mol Cell Biol. 2008;28(2):752-771.
35. Cheng JC, Yoo CB, Weisenberger DJ, et al. Preferential response of cancer cells to zebu- larine. Cancer Cell. 2004;6(2):151-158.
36. Patel K, Dickson J, Din S, et al. Targeting of 5-aza-2′-deoxycytidine residues by chro- matin-associated DNMT1 induces proteaso-
haematologica | 2021; 106(7)
1987