Page 186 - 2021_07-Haematologica-web
P. 186
A.G. Solimando et al. References
study. Oncotarget. 2018;9(17):13366-13381. 17. Jridi I, Catacchio I, Majdoub H, et al. The small subunit of Hemilipin2, a new het- erodimeric phospholipase A2 from Hemiscorpius lepturus scorpion venom, mediates the antiangiogenic effect of the
whole protein. Toxicon. 2017;126:38-46. 18. Nowak-Sliwinska P, Alitalo K, Allen E, et al. Consensus guidelines for the use and inter- pretation of angiogenesis assays.
Angiogenesis. 2018;21(3):425-532.
19. Ribatti D, Nico B, Vacca A, Presta M. The gelatin sponge-chorioallantoic membrane
assay. Nat Protoc. 2006;1(1):85-91.
20.Qin Y, Zhang S, Deng S, et al. Epigenetic silencing of miR-137 induces drug resistance and chromosomal instability by targeting AURKA in multiple myeloma. Leukemia.
2017;31(5):1123-1135.
21. Mitsiades CS, Anderson KC, Carrasco DR.
Mouse models of human myeloma. Hematol Oncol Clin North Am. 2007; 21(6):1051-1069, viii.
34. Peddibhotla SSD, Brinkmann BF, Kummer D, et al. Tetraspanin CD9 links junctional adhesion molecule-A to avβ3 integrin to mediate basic fibroblast growth factor-spe- cific angiogenic signaling. Mol Biol Cell. 2013;24(7):933-944.
35.Tu S-H, Chang C-C, Chen C-S, et al. Increased expression of enolase alpha in human breast cancer confers tamoxifen resistance in human breast cancer cells. Breast Cancer Res Treat. 2010;121(3):539- 553.
36. Yu Y-Q, Wang L, Jin Y, et al. Identification of serologic biomarkers for predicting microvascular invasion in hepatocellular carcinoma. Oncotarget. 2016;7(13):16362- 16371.
1. Steinbacher T, Kummer
Junctional adhesion molecule-A: functional diversity through molecular promiscuity. Cell Mol Life Sci. 2018;75(8):1393-1409.
2. Solimando AG, Brandl A, Mattenheimer K, et al. JAM-A as a prognostic factor and new therapeutic target in multiple myeloma. Leukemia. 2018;32(3):736-743.
3. Leech AO, Cruz RGB, Hill ADK, Hopkins AM. Paradigms lost-an emerging role for over-expression of tight junction adhesion proteins in cancer pathogenesis. Ann Transl Med. 2015;3(13):184.
4.Severson EA, Parkos CA. Mechanisms of outside-in signaling at the tight junction by junctional adhesion molecule A. Ann N Y Acad Sci. 2009;1165:10-18.
5. Ebnet K, Schulz CU, Meyer Zu Brickwedde MK, Pendl GG, Vestweber D. Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J Biol Chem. 2000;275(36):27979-27988.
6.Ebnet K. Junctional adhesion molecules (JAMs): cell adhesion receptors with pleiotropic functions in cell physiology and development. Physiol Rev. 2017;97(4): 1529-1554.
7.Terral G, Champion T, Debaene F, et al. Epitope characterization of anti-JAM-A antibodies using orthogonal mass spectrom- etry and surface plasmon resonance approaches. mAbs. 2017;9(8):1317-1326.
8.Vellanki SH, Cruz RGB, Jahns H, et al. Natural compound tetrocarcin-A downreg- ulates junctional adhesion molecule-A in conjunction with HER2 and inhibitor of apoptosis proteins and inhibits tumor cell growth. Cancer Lett. 2019;440-441:23-34.
9. Koenen RR, Pruessmeyer J, Soehnlein O, et al. Regulated release and functional modula- tion of junctional adhesion molecule A by disintegrin metalloproteinases. Blood. 2009;113(19):4799-4809.
10. Bazzoni G, Martinez-Estrada OM, Orsenigo F, Cordenonsi M, Citi S, Dejana E. Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. J Biol Chem. 2000;275(27):20520-20526.
11. Murakami M, Francavilla C, Torselli I, et al. Inactivation of junctional adhesion mole- cule-A enhances antitumoral immune response by promoting dendritic cell and T lymphocyte infiltration. Cancer Res. 2010;70(5):1759-1765.
12.Rajkumar SV, Mesa RA, Fonseca R, et al. Bone marrow angiogenesis in 400 patients with monoclonal gammopathy of undeter- mined significance, multiple myeloma, and primary amyloidosis. Clin Cancer Res. 2002;8(7):2210-2216.
13. Moschetta M, Mishima Y, Kawano Y, et al. Targeting vasculogenesis to prevent pro- gression in multiple myeloma. Leukemia. 2016;30(5):1103-1115.
14. Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15(12):e538-548.
15. Rajkumar SV, Harousseau J-L, Durie B, et al. Consensus recommendations for the uni- form reporting of clinical trials: report of the International Myeloma Workshop Consensus Panel 1. Blood. 2011; 117(18):4691-4695.
16.Rao L, De Veirman K, Giannico D, et al. Targeting angiogenesis in multiple myelo- ma by the VEGF and HGF blocking DARPin® protein MP0250: a preclinical
D, Ebnet
K.
22.Rajkumar SV, Leong T, Roche PC, et al. Prognostic value of bone marrow angiogen- esis in multiple myeloma. Clin Cancer Res. 2000;6(8):3111-3116.
38. Cappello P, Tonoli E, Curto R, Giordano D, Giovarelli M, Novelli F. Anti-α-enolase anti- body limits the invasion of myeloid-derived suppressor cells and attenuates their restraining effector T cell response. Oncoimmunology. 2016;5(5):e1112940.
23. Ria R, Catacchio I, Berardi S, et al. HIF-1a of bone marrow endothelial cells implies relapse and drug resistance in patients with multiple myeloma and may act as a thera- peutic target. Clin Cancer Res. 2014;20(4): 847-858.
39. Castella B, Foglietta M, Riganti C, Massaia M. Vγ9Vd2 T cells in the bone marrow of myeloma patients: a paradigm of microen- vironment-induced immune suppression. Front Immunol. 2018;9:1492.
40. Casal C, Torres-Collado AX, Plaza-Calonge MDC, et al. ADAMTS1 contributes to the acquisition of an endothelial-like phenotype in plastic tumor cells. Cancer Res. 2010;70(11):4676-4686.
41.Hope C, Foulcer S, Jagodinsky J, et al. Immunoregulatory roles of versican proteol- ysis in the myeloma microenvironment. Blood. 2016;128(5):680-685.
42.Li J, Zou K, Yu L, et al. MicroRNA-140 inhibits the epithelial-mesenchymal transi- tion and metastasis in colorectal cancer. Mol Ther Nucleic Acids. 2018;10:426-437.
43.Marchica V, Toscani D, Corcione A, et al. Bone marrow CX3CL1/fractalkine is a new player of the pro-angiogenic microenviron- ment in multiple myeloma patients. Cancers. 2019;11(3):321.
44. Savitski MM, Zinn N, Faelth-Savitski M, et al. Multiplexed proteome dynamics profil- ing reveals mechanisms controlling protein homeostasis. Cell. 2018;173(1):260-274.e25.
45. Ren B-J, Zhou Z-W, Zhu D-J, et al. Alisertib induces cell cycle arrest, apoptosis, autophagy and suppresses EMT in HT29 and Caco-2 cells. Int J Mol Sci. 2015;17(1):41.
46.Noll JE, Vandyke K, Hewett DR, et al. PTTG1 expression is associated with hyper- proliferative disease and poor prognosis in multiple myeloma. J Hematol Oncol. 2015;8:106.
47. Waldschmidt JM, Simon A, Wider D, et al. CXCL12 and CXCR7 are relevant targets to reverse cell adhesion-mediated drug resist- ance in multiple myeloma. Br J Haematol. 2017;179(1):36-49.
48. Zhang X-D, Baladandayuthapani V, Lin H, et al. Tight junction protein 1 modulates proteasome capacity and proteasome inhibitor sensitivity in multiple myeloma via EGFR/JAK1/STAT3 signaling. Cancer Cell. 2016;29(5):639-652.
49. Ramroop JR, Stein MN, Drake JM. Impact of phosphoproteomics in the era of preci- sion medicine for prostate cancer. Front Oncol. 2018;8:28.
50. Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportuni- ties. Nat Rev Cancer. 2002;2(8):584-593.
24. Fukuhara T, Kim J, Hokaiwado S, et al. A novel immunotoxin reveals a new role for CD321 in endothelial cells. PloS One. 2017; 12(10):e0181502.
25. Stamatovic SM, Sladojevic N, Keep RF, Andjelkovic AV. Relocalization of junctional adhesion molecule A during inflammatory stimulation of brain endothelial cells. Mol Cell Biol. 2012;32(17):3414-3427.
26. Moschetta M, Basile A, Ferrucci A, et al. Novel targeting of phospho-cMET over- comes drug resistance and induces antitu- mor activity in multiple myeloma. Clin Cancer Res. 2013;19(16):4371-4382.
27. Ferrucci A, Moschetta M, Frassanito MA, et al. A HGF/cMET autocrine loop is operative in multiple myeloma bone marrow endothelial cells and may represent a novel therapeutic target. Clin Cancer Res. 2014;20(22):5796-5807.
28. Babinska A, Kedees MH, Athar H, et al. F11- receptor (F11R/JAM) mediates platelet adhesion to endothelial cells: role in inflam- matory thrombosis. Thromb Haemost. 2002;88(5):843-850.
29.Cooke VG, Naik MU, Naik UP. Fibroblast growth factor-2 failed to induce angiogene- sis in junctional adhesion molecule-A-defi- cient mice. Arterioscler Thromb Vasc Biol. 2006;26(9):2005-2011.
30. Leone P, Di Lernia G, Solimando AG, et al. Bone marrow endothelial cells sustain a tumor-specific CD8+ T cell subset with sup- pressive function in myeloma patients. Oncoimmunology. 2019;8(1):e1486949.
31.Hu X, Xuan H, Du H, Jiang H, Huang J. Down-regulation of CD9 by methylation decreased bortezomib sensitivity in multi- ple myeloma. PloS One. 2014;9(5):e95765.
32.De Bruyne E, Bos TJ, Asosingh K, et al. Epigenetic silencing of the tetraspanin CD9 during disease progression in multiple myeloma cells and correlation with sur- vival. Clin Cancer Res. 2008;14(10):2918- 2926.
33. Wallstabe L, Mades A, Frenz S, Einsele H, Rader C, Hudecek M. CAR T cells targeting avβ3 integrin are effective against advanced cancer in preclinical models. Adv Cell Gene Ther. 2018;1(2):e11.
37. Rossignol P, Ho-Tin-Noé B, Vranckx R, et al. Protease nexin-1 inhibits plasminogen acti- vation-induced apoptosis of adherent cells. J Biol Chem. 2004;279(11):10346-10356.
1956
haematologica | 2021; 106(7)