Page 67 - 2021_06-Haematologica-web
P. 67

Acute Myeloid Leukemia
RUNX1-EVI1 disrupts lineage determination and the cell cycle by interfering with RUNX1 and EVI1 driven gene regulatory networks
Ferrata Storti Foundation
Haematologica 2021 Volume 106(6):1569-1580
Sophie G. Kellaway, Peter Keane, Ella Kennett and Constanze Bonifer
Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
ABSTRACT
Hematological malignancies are characterized by a block in differ- entiation, which in many cases is caused by recurrent mutations affecting the activity of hematopoietic transcription factors. RUNX1-EVI1 is a fusion protein encoded by the t(3;21) translocation linking two transcription factors required for normal hematopoiesis. RUNX1-EVI1 expression is found in myelodysplastic syndrome, second- ary acute myeloid leukemia, and blast crisis of chronic myeloid leukemia; with clinical outcomes being worse than in patients with RUNX1-ETO, RUNX1 or EVI1 mutations alone. RUNX1-EVI1 is usually found as a secondary mutation, therefore the molecular mechanisms underlying how RUNX1-EVI1 alone contributes to poor prognosis are unknown. In order to address this question, we induced expression of RUNX1-EVI1 in hematopoietic cells derived from an embryonic stem cell differentiation model. Induction resulted in disruption of the RUNX1-dependent endothelial-hematopoietic transition, blocked the cell cycle and undermined cell fate decisions in multipotent hematopoi- etic progenitor cells. Integrative analyses of gene expression with chro- matin and transcription factor binding data demonstrated that RUNX1- EVI1 binding caused a re-distribution of endogenous RUNX1 within the genome and interfered with both RUNX1 and EVI1 regulated gene expression programs. In summary, RUNX1-EVI1 expression alone leads to extensive epigenetic reprogramming which is incompatible with healthy blood production.
Introduction
The development of acute myeloid leukemia (AML) is a step-wise process wherein cells acquire multiple additional genetic changes following the occurrence of the initial driver mutation which eventually leads to the development of overt disease. A number of driver mutations, such as the t(8;21) translocation which gives rise to the fusion protein RUNX1-ETO are compatible with a pre-leukemic state.1 However, another fusion protein, RUNX1-EVI1 is found most commonly as a secondary mutation2-4 and is associated with a particularly poor prognosis. The RUNX1-EVI1 onco-fusion protein is a product of the t(3;21)(q26;q22) translocation which links sequences from RUNX1 to the entire length of the MDS-EVI1 or EVI1 (also known as MECOM) locus. Elucidating the molecular basis of the phenotypic changes induced by RUNX1-EVI1 alone is complicated by the fact that it is expressed on a background of other mutations and thus unique transcriptional re- wiring is seen in each patient.5
Both RUNX1 and EVI1 play important roles in normal hematopoiesis and in var- ious hematological malignancies. RUNX1 (also known as AML1) is a transcription factor essential for initial specification of hematopoietic cells,6 and is frequently found to be mutated in leukemia.7,8 RUNX1 contains a DNA-binding domain – the runt homology domain (RUNT) at the N-terminus, which is preserved in RUNX1- EVI1 and a transactivation domain which is lost.7 MDS-EVI1 and EVI1 arise from alternative transcripts from the MECOM gene which have both overlapping and opposing functions – EVI1 can be a repressor of gene transcription, whereas MDS- EVI1 has activating functions.9 MDS-EVI1 is essential for long-term survival of
Correspondence:
CONSTANZE BONIFER
c.bonifer@bham.ac.uk
Received: November 5, 2019. Accepted: April 9, 2020. Pre-published: April 16, 2020.
https://doi.org/10.3324/haematol.2019.241885
©2021 Ferrata Storti Foundation
Material published in Haematologica is covered by copyright. All rights are reserved to the Ferrata Storti Foundation. Use of published material is allowed under the following terms and conditions: https://creativecommons.org/licenses/by-nc/4.0/legalcode. Copies of published material are allowed for personal or inter- nal use. Sharing published material for non-commercial pur- poses is subject to the following conditions: https://creativecommons.org/licenses/by-nc/4.0/legalcode, sect. 3. Reproducing and sharing published material for com- mercial purposes is not allowed without permission in writing from the publisher.
haematologica | 2021; 106(6)
1569
ARTICLE


































































































   65   66   67   68   69