Page 81 - 2021_05-Haematologica-web
P. 81

Impact of donor biology on stored RBC metabolism
Funding
Research reported in this publication was funded by the NHLBI Recipient Epidemiology and Donor Evaluation Study- III (REDS-III), which was supported by NHLBI contracts NHLBI HHSN2682011-00001I, -00002I, -00003I, - 00004I, 00005I, -00006I, -00007I, -00008I, and -00009I,
as well as funds from the the National Institute of General and Medical Sciences (RM1GM131968 to ADA), NHLBI R01HL146442 and R01HL149714 (ADA), R01HL148151 (ADA, JCZ), the Boettcher Webb-Waring Investigator Award (ADA) and a Shared Instrument grant by the National Institute of Health (S10OD021641).
References
1.D’Alessandro A, Kriebardis AG, Rinalducci S, et al. An update on red blood cell storage lesions, as gleaned through biochemistry and omics technologies. Transfusion. 2015; 55(1):205-219.
2.Bardyn M, Rappaz B, Jaferzadeh K, et al. Red blood cells ageing markers: a multi- parametric analysis. Blood Transfus. 2017;15(3):239-248.
3. Blasi B, D’Alessandro A, Ramundo N, Zolla L. Red blood cell storage and cell morpholo- gy. Transfus. Med Oxf Engl. 2012;22(2):90- 96.
4.Roussel C, Monnier S, Dussiot M, et al. Fluorescence exclusion: a simple method to assess projected surface, volume and mor- phology of red blood cells stored in blood bank. Front Med. 2018;5:164.
5. Yoshida T, Prudent M, D’alessandro A. Red blood cell storage lesion: causes and poten- tial clinical consequences. Blood Transfus. 2019;17(1):27-52.
6. Paglia G, D’Alessandro A, Rolfsson Ó, et al. Biomarkers defining the metabolic age of red blood cells during cold storage. Blood. 2016;128(13):e43-50.
7. Zimring James C. Widening our gaze of red blood storage haze: a role for metabolomics. Transfusion. 2015;55(6):1139-1142.
8. Yoshida T, Prudent M, D’alessandro A. Red blood cell storage lesion: causes and poten- tial clinical consequences. Blood Transfus. 2019;17(1):27-52.
9. Tsai AG, Hofmann A, Cabrales P, Intaglietta M. Perfusion vs. oxygen delivery in transfu- sion with “fresh” and “old” red blood cells: The experimental evidence. Transfus Apher Sci. 2010;43(1):69-78.
10.Heaton A, Keegan T, Holme S. In vivo regeneration of red cell 2,3-diphosphoglyc- erate following transfusion of DPG-depleted AS-1, AS-3 and CPDA-1 red cells. Br J Haematol. 1989;71(1):131-136.
11. D’Alessandro A, Reisz JA, Culp-Hill R, et al. Metabolic effect of alkaline additives and guanosine/gluconate in storage solutions for red blood cells. Transfusion. 2018; 58(8):1992-2002.
12. Van ’t Erve TJ, Wagner BA, Martin SM, et al. The heritability of hemolysis in stored human red blood cells. Transfusion. 2015; 55(6):1178-1185.
13. Nemkov T, Sun K, Reisz JA, et al. Hypoxia modulates the purine salvage pathway and decreases red blood cell and supernatant lev- els of hypoxanthine during refrigerated stor- age. Haematologica. 2018;103(2):361-372.
14.Howie HL, Hay AM, de Wolski K, et al. Differences in Steap3 expression are a mech- anism of genetic variation of RBC storage and oxidative damage in mice. Blood Adv. 2019;3(15):2272-2285.
15. Belpulsi D, Spitalnik SL, Hod EA. The con- troversy over the age of blood: what do the clinical trials really teach us? Blood Transfus. 2017;15(2):112-115.
16. Roubinian NH, Westlake M, St Lezin EM, et
al. Association of donor age, body mass index, hemoglobin, and smoking status with in-hospital mortality and length of stay among red blood cell-transfused recipients. Transfusion. 2019;59(11):3362-3370.
17. D’Alessandro A. From Omics technologies to personalized transfusion medicine. Expert Rev Proteomics. 2019;16(3):215-225.
18. Koch CG, Duncan AI, Figueroa P, et al. Real age: red blood cell aging during storage. Ann Thorac Surg. 2019;107(3):973-980.
19. Bardyn M, Maye S, Lesch A, et al. The antioxidant capacity of erythrocyte concen- trates is increased during the first week of storage and correlated with the uric acid level. Vox Sang. 2017;112(7):638-647.
20. Jordan A, Chen D, Yi Q-L, et al. Assessing the influence of component processing and donor characteristics on quality of red cell concentrates using quality control data. Vox Sang. 2016;111(1):8-15.
21.Yoshida T, Blair A, D’alessandro A, et al. Enhancing uniformity and overall quality of red cell concentrate with anaerobic storage. Blood Transfus. 2017;15(2):172-181.
22. Reisz JA, Wither MJ, Dzieciatkowska M, et al. Oxidative modifications of glyceralde- hyde 3-phosphate dehydrogenase regulate metabolic reprogramming of stored red blood cells. Blood. 2016;128(12):e32-42.
23. Wither M, Dzieciatkowska M, Nemkov T, et al. Hemoglobin oxidation at functional amino acid residues during routine storage of red blood cells. Transfusion. 2016;56(2):421-426.
24. Tzounakas VL, Georgatzakou HT, Kriebardis AG, et al. Uric acid variation among regular blood donors is indicative of red blood cell susceptibility to storage lesion markers: A new hypothesis tested. Transfusion. 2015;55(11):2659-2671.
25. Tzounakas VL, Georgatzakou HT, Kriebardis AG, et al. Donor variation effect on red blood cell storage lesion: a multivari- able, yet consistent, story. Transfusion. 2016;56(6):1274-1286.
26.Francis RO, Jhang JS, Pham HP, et al. Glucose-6-phosphate dehydrogenase defi- ciency in transfusion medicine: the unknown risks. Vox Sang. 2013;105(4):271- 282.
27 Reisz JA, Tzounakas VL, Nemkov T, et al. Metabolic linkage and correlations to stor- age capacity in erythrocytes from glucose 6-phosphate dehydrogenase-deficient donors. Front Med. 2017;4:248.
28. Tzounakas VL, Kriebardis AG, Georgatzakou HT, et al. Glucose 6-phos- phate dehydrogenase deficient subjects may be better “storers” than donors of red blood cells. Free Radic Biol Med. 2016;96:152-165.
29.Sagiv E, Fasano RM, Luban NLC, et al. Glucose-6-phosphate-dehydrogenase defi- cient red blood cell units are associated with decreased posttransfusion red blood cell sur- vival in children with sickle cell disease. Am J Hematol. 2018;93(5):630-634.
30. Francis RO, D’Alessandro A, Eisenberger A, et al. Donor glucose-6-phosphate dehydro- genase deficiency decreases blood quality
for transfusion. J Clin Invest. 2020;130
(5):2270-2285.
31. Glucose-6-phosphate dehydrogenase defi-
ciency. WHO Working Group. Bull. World
Health Organ. 1989;67(6):601-611.
32. Kanias T, Sinchar D, Osei-Hwedieh D, et al. Testosterone-dependent sex differences in red blood cell hemolysis in storage, stress, and disease. Transfusion. 2016;56(10):2571-
2583.
33.Kanias T, Lanteri MC, Page GP, et al.
Ethnicity, sex, and age are determinants of red blood cell storage and stress hemolysis: results of the REDS-III RBC-Omics study. Blood Adv. 2017;1(15):1132-1141.
34. Endres-Dighe SM, Guo Y, Kanias T, et al. Blood, sweat, and tears: Red Blood Cell- Omics study objectives, design, and recruit- ment activities. Transfusion. 2019;59(1):46- 56.
35.Lanteri MC, Kanias T, Keating S, et al. Intradonor reproducibility and changes in hemolytic variables during red blood cell storage: results of recall phase of the REDS- III RBC-Omics study. Transfusion. 2019; 59(1):79-88.
36. D’Alessandro A, Culp-Hill R, Reisz JA, et al. Heterogeneity of blood processing and stor- age additives in different centers impacts stored red blood cell metabolism as much as storage time: lessons from REDS III – Omics. Transfusion. 2019;59(1):89-100. Kanias T, Lanteri MC, Page GP, et al. Ethnicity, sex, and age are determinants of red blood cell storage and stress hemolysis: results of the REDS-III RBC-Omics study. Blood Adv. 2017;1(15):1132-1141.
38.Stone M, Keating SM, Kanias T, et al. Piloting and implementation of quality assessment and quality control procedures in RBC-Omics: a large multi-center study of red blood cell hemolysis during storage. Transfusion. 2019;59(1):57-66.
37.
39.
40.
Reisz JA, Barrett AS, Nemkov T, Hansen KC, D’Alessandro A. When nature’s robots go rogue: exploring protein homeostasis dysfunction and the implications for under- standing human aging disease pathologies. Expert Rev Proteomics. 2018;15(4):293-309. Karafin MS, Fu X, D’Alessandro A, et al. The clinical impact of glucose-6-phosphate dehydrogenase deficiency in patients with sickle cell disease. Curr Opin Hematol. 2018; 25(6):494-499.
41.Guo Y, Busch MP, Seielstad M, et al. Development and evaluation of a transfu- sion medicine genome wide genotyping array. Transfusion. 2019;59(1):101-111.
42.LaRue N, Kahn M, Murray M, et al. Comparison of quantitative and qualitative tests for glucose-6-phosphate dehydroge- nase deficiency. Am J Trop Med Hyg. 2014; 91(4):854-861.
43. Arese P, Gallo V, Pantaleo A, Turrini F. Life and death of glucose-6-phosphate dehydro- genase (G6PD) deficient erythrocytes – role of redox stress and band 3 modifications. Transfus Med Hemother. 2012;39(5):328- 334.
44.Maurya PK, Kumar P, Chandra P. Age-
haematologica | 2021; 106(5)
1301


































































































   79   80   81   82   83