Page 32 - 2021_05-Haematologica-web
P. 32

D.M. Ross et al.
17. Lu X, Huang LJ, Lodish HF. Dimerization by a cytokine receptor is necessary for constitu- tive activation of JAK2V617F. J Biol Chem. 2008;283(9):5258-5266.
18. Lu X, Levine R, Tong W, et al. Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transfor- mation. Proc Natl Acad Sci U S A. 2005;102 (52):18962-18967.
19. Ungureanu D, Wu J, Pekkala T, et al. The pseudokinase domain of JAK2 is a dual- specificity protein kinase that negatively regulates cytokine signaling. Nat Struct Mol Biol. 2011;18(9):971-976.
20. Jeong EG, Kim MS, Nam HK, et al. Somatic mutations of JAK1 and JAK3 in acute leukemias and solid cancers. Clin Cancer Res. 2008;14(12):3716-3721.
21. Staerk J, Kallin A, Demoulin JB, Vainchenker W, Constantinescu SN. JAK1 and Tyk2 acti- vation by the homologous polycythemia vera JAK2 V617F mutation: cross-talk with IGF1 receptor. J Biol Chem. 2005;280(51): 41893-41899.
22. Wilmes S, Hafer M, Vuorio J, et al. Mechanism of homodimeric cytokine recep- tor activation and dysregulation by oncogenic mutations. Science. 2020;367(6478): 643-652.
23. Moliterno AR, Williams DM, Rogers O, Isaacs MA, Spivak JL. Phenotypic variability within the JAK2 V617F-positive MPD: roles of progenitor cell and neutrophil allele bur- dens. Exp Hematol. 2008;36(11):1480-1486.
24. Stein BL, Saraf S, Sobol U, et al. Age-related differences in disease characteristics and clinical outcomes in polycythemia vera. Leuk Lymphoma. 2013;54(9):1989-1995.
25. Gangat N, Tefferi A. Myelofibrosis biology and contemporary management. Br J Haematol. 2020;191(2):152-170.
26. Ortmann CA, Kent DG, Nangalia J, et al. Effect of mutation order on myeloprolifera- tive neoplasms. N Engl J Med. 2015;372(7): 601-612.
27. Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379-2390.
28. Eder-Azanza L, Navarro D, Aranaz P, Novo FJ, Cross NC, Vizmanos JL. Bioinformatic analyses of CALR mutations in myeloprolif- erative neoplasms support a role in signal- ing. Leukemia. 2014;28(10):2106-2109.
29. Tefferi A, Lasho TL, Finke C, et al. Type 1 vs type 2 calreticulin mutations in primary myelofibrosis: differences in phenotype and prognostic impact. Leukemia. 2014;28(7): 1568-1570.
30. Guglielmelli P, Lasho TL, Rotunno G, et al. MIPSS70: Mutation-enhanced International Prognostic Score System for transplantation- age patients with primary myelofibrosis. J Clin Oncol. 2018;36(4):310-318.
31. Clinton A, McMullin MF. The calreticulin gene and myeloproliferative neoplasms. J Clin Pathol. 2016;69(10):841-845.
32. Elf S, Abdelfattah NS, Baral AJ, et al. Defining the requirements for the pathogenic interac- tion between mutant calreticulin and MPL in MPN. Blood. 2018;131(7):782-786.
33. Elf S, Abdelfattah NS, Chen E, et al. Mutant calreticulin requires both its mutant C-ter- minus and the thrombopoietin receptor for oncogenic transformation. Cancer Discov. 2016;6(4):368-381.
34.Pecquet C, Chachoua I, Roy A, et al. Calreticulin mutants as oncogenic rogue chaperones for TpoR and traffic-defective pathogenic TpoR mutants. Blood. 2019;133 (25):2669-2681.
35.Sollazzo D, Forte D, Polverelli N, et al.
Circulating calreticulin is increased in myelofibrosis: correlation with interleukin-6 plasma levels, bone marrow fibrosis, and splenomegaly. Mediators Inflamm. 2016; 2016:5860657.
36. Pecquet C, Balligand T, Chachoua I, et al. Secreted mutant calreticulins as rogue cytokines trigger thrombopoietin receptor activation specifically in CALR mutated cells: perspectives for MPN therapy. Blood. 2018;132(Suppl 1):4.
37. Guglielmelli P, Rotunno G, Bogani C, et al. Ruxolitinib is an effective treatment for CALR-positive patients with myelofibrosis. Br J Haematol. 2016;173(6):938-940.
38.Verstovsek S, Mesa RA, Gotlib J, et al. A double-blind, placebo-controlled trial of rux- olitinib for myelofibrosis. N Engl J Med. 2012;366(9):799-807.
39. Harrison C, Kiladjian JJ, Al-Ali HK, et al. JAK inhibition with ruxolitinib versus best avail- able therapy for myelofibrosis. N Engl J Med. 2012;366(9):787-798.
40. Verstovsek S, Mesa RA, Gotlib J, et al. The clinical benefit of ruxolitinib across patient subgroups: analysis of a placebo-controlled, phase III study in patients with myelofibro- sis. Br J Haematol. 2013;161(4):508-516.
41.Godfrey AL, Chen E, Pagano F, et al. JAK2V617F homozygosity arises commonly and recurrently in PV and ET, but PV is char- acterized by expansion of a dominant homozygous subclone. Blood. 2012;120(13): 2704-2707.
42. Cervantes F, Vannucchi AM, Kiladjian JJ, et al. Three-year efficacy, safety, and survival findings from COMFORT-II, a phase 3 study comparing ruxolitinib with best avail- able therapy for myelofibrosis. Blood. 2013;122(25):4047-4053.
43. Harrison CN, Vannucchi AM, Kiladjian JJ, et al. Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis. Leukemia. 2016;30(8):1701-1707.
44. Masarova L, Wang W, Newberry KJ, Kantarjian H, Verstovsek S. Complete remis- sion in a patient with JAK2- and IDH2-posi- tive myelofibrosis. Blood. 2016;128(6):877- 880.
45. Verstovsek S, Gotlib J, Mesa RA, et al. Long- term survival in patients treated with ruxoli- tinib for myelofibrosis: COMFORT-I and -II pooled analyses. J Hematol Oncol. 2017;10(1):156.
46. Stivala S, Codilupi T, Brkic S, et al. Targeting compensatory MEK/ERK activation increas- es JAK inhibitor efficacy in myeloprolifera- tive neoplasms. J Clin Invest. 2019;129(4): 1596-1611.
47.Nangalia J, Nice FL, Wedge DC, et al. DNMT3A mutations occur early or late in patients with myeloproliferative neoplasms and mutation order influences phenotype. Haematologica. 2015;100(11):e438-442.
48. Hatzivassiliou G, Song K, Yen I, et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature. 2010;464(7287):431-435.
49. Koppikar P, Bhagwat N, Kilpivaara O, et al. Heterodimeric JAK-STAT activation as a mechanism of persistence to JAK2 inhibitor therapy. Nature. 2012;489(7414):155-159.
50. Andraos R, Qian Z, Bonenfant D, et al. Modulation of activation-loop phosphoryla- tion by JAK inhibitors is binding mode dependent. Cancer Discov. 2012;2(6):512- 523.
51. Tvorogov D, Thomas D, Liau NPD, et al. Accumulation of JAK activation loop phos- phorylation is linked to type I JAK inhibitor
withdrawal syndrome in myelofibrosis. Sci
Adv. 2018;4(11):eaat3834.
52. Bankar A, Gupta V. Investigational non-JAK
inhibitors for chronic phase myelofibrosis. Expert Opin Investig Drugs. 2020;29(5):461- 474.
53. Haan S, Wuller S, Kaczor J, et al. SOCS- mediated downregulation of mutant Jak2 (V617F, T875N and K539L) counteracts cytokine-independent signaling. Oncogene. 2009;28(34):3069-3080.
54. Grandage VL, Everington T, Linch DC, Khwaja A. Go6976 is a potent inhibitor of the JAK 2 and FLT3 tyrosine kinases with significant activity in primary acute myeloid leukaemia cells. Br J Haematol. 2006;135 (3):303-316.
55.Marty C, Pecquet C, Nivarthi H, et al. Calreticulin mutants in mice induce an MPL- dependent thrombocytosis with frequent progression to myelofibrosis. Blood. 2016;127(10):1317-1324.
56. Balligand T, Achouri Y, Pecquet C, et al. Pathologic activation of thrombopoietin receptor and JAK2-STAT5 pathway by frameshift mutants of mouse calreticulin. Leukemia. 2016;30(8):1775-1778.
57.Nivarthi H, Chen D, Cleary C, et al. Thrombopoietin receptor is required for the oncogenic function of CALR mutants. Leukemia. 2016;30(8):1759-1763.
58. Shi JG, Chen X, McGee RF, et al. The phar- macokinetics, pharmacodynamics, and safe- ty of orally dosed INCB018424 phosphate in healthy volunteers. J Clin Pharmacol. 2011;51(12):1644-1654.
59.
60.
61.
Zhang M, Xu C, Ma L, et al. Effect of food on the bioavailability and tolerability of the JAK2-selective inhibitor fedratinib (SAR302503): results from two phase I stud- ies in healthy volunteers. Clin Pharmacol Drug Dev. 2015;4(4):315-321.
Younes A, Romaguera J, Fanale M, et al. Phase I study of a novel oral Janus kinase 2 inhibitor, SB1518, in patients with relapsed lymphoma: evidence of clinical and biologic activity in multiple lymphoma subtypes. J Clin Oncol. 2012;30(33):4161-4167. Pardanani A, Laborde RR, Lasho TL, et al. Safety and efficacy of CYT387, a JAK1 and JAK2 inhibitor, in myelofibrosis. Leukemia. 2013;27(6):1322-1327.
62. Tefferi A, Pardanani A. Serious adverse events during ruxolitinib treatment discon- tinuation in patients with myelofibrosis. Mayo Clin Proc. 2011;86(12):1188-1191. Coltro G, Mannelli F, Guglielmelli P, Pacilli A, Bosi A, Vannucchi AM. A life-threatening ruxolitinib discontinuation syndrome. Am J Hematol. 2017;92(8):833-838.
64. Dai T, Friedman EW, Barta SK. Ruxolitinib withdrawal syndrome leading to tumor lysis. J Clin Oncol. 2013;31(29):e430-432.
65. Beauverd Y, Samii K. Acute respiratory dis- tress syndrome in a patient with primary myelofibrosis after ruxolitinib treatment dis- continuation. Int J Hematol. 2014;100(5): 498-501.
66. Herman DD, Kempe CB, Thomson CC, McCallister JW. Recurrent hypoxemic respi- ratory failure. Beyond the usual suspects. Ann Am Thorac Soc. 2014;11(7):1145-1148.
67. Harrison C, Mesa R, Ross D, et al. Practical management of patients with myelofibrosis receiving ruxolitinib. Expert Rev Hematol. 2013;6(5):511-523.
68. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Myeloproliferative Neoplasms. 2020 [accessed August 5, 2020].
69. Palandri F, Breccia M, Bonifacio M, et al. Life
63.
1252
haematologica | 2021; 106(5)


































































































   30   31   32   33   34