Page 22 - 2021_05-Haematologica-web
P. 22

Fleur S. Peters et al.
473.
7. Attekum MH van, Eldering E, Kater AP.
Chronic lymphocytic leukemia cells are active participants in microenvironmental cross-talk. Haematologica. 2017;102(9): 1469-1476.
8. Haselager MV, Kielbassa K, Ter Burg J, et al. Changes in Bcl-2 members in response to ibrutinib or venetoclax uncover functional hierarchy in determining resistance to vene- toclax in CLL. Blood. 2020;136(25):2918- 2926.
9.Pascutti MF, M J, Jm T, et al. IL-21 and CD40L signals from autologous T cells can induce antigen-independent proliferation of CLL cells. Blood. 2013;122(17):3010-3019.
10. Hanna BS, Roessner PM, Yazdanparast H, et al. Control of chronic lymphocytic leukemia development by clonally-expanded CD8 + T-cells that undergo functional exhaustion in secondary lymphoid tissues. Leukemia. 2019;33(3):625-637.
11. Haselager MV, Kater AP, Eldering E. Proliferative signals in chronic lymphocytic leukemia; What are we missing? Front Oncol. 2020;10:592205.
12. Hofland T, Eldering E, Kater AP, Tonino SH. Engaging cytotoxic T and NK cells for immunotherapy in chronic lymphocytic leukemia. Int J Mol Sci. 2019;20(17):4315.
13.Viardot A, Hess G, Bargou RC, et al. Durability of complete response after blina- tumomab therapy for relapsed/refractory diffuse large B-cell lymphoma. Leuk Lymphoma. 2020;61(11):2767-2770.
14. Cao J-X, Gao W-J, You J, Wu L-H, Liu J-L, Wang Z-X. The efficacy of anti-CD19 chimeric antigen receptor T cells for B-cell malignancies. Cytotherapy. 2019;21(7):769- 781.
15.Ding W, LaPlant BR, Call TG, et al. Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL. Blood. 2017;129(26):3419-3427.
16. Sadik A, Patterson LFS, Öztürk S, et al. IL4I1 Is a metabolic immune checkpoint that acti- vates the AHR and promotes tumor progres- sion. Cell. 2020;182(5):1252-1270.e34.
17. Kochenderfer JN, Dudley ME, Feldman SA, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood. 2012;119(12):2709-2720.
(9):1612-1621.
25. van Bruggen JAC, Martens AWJ, Fraietta JA,
et al. Chronic lymphocytic leukemia cells impair mitochondrial fitness in CD8+ T cells and impede CAR T-cell efficacy. Blood. 2019;134(1):44-58.
26. Thommen DS, Schumacher TN. T cell dys- function in cancer. Cancer Cell. 2018;33(4): 547-562.
27. Schietinger A, Philip M, Krisnawan VE, et al. Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation pro- gram initiated early during tumorigenesis. Immunity. 2016;45(2):389-401.
28. de Weerdt I, Hofland T, de Boer R, et al. Distinct immune composition in lymph node and peripheral blood of CLL patients is reshaped during venetoclax treatment. Blood Adv. 2019;3(17):2642-2652.
29. Riches JC, Gribben JG. Understanding the immunodeficiency in chronic lymphocytic leukemia: potential clinical implications. Hematol Oncol Clin North Am. 2013;27(2):207-235.
30. Man S, Henley P. Chronic lymphocytic leukaemia: the role of T cells in a B cell dis- ease. Br J Haematol. 2019;186(2):220-233.
31. Roessner PM, Hanna BS, Öztürk S, et al. TBET-expressing Th1 CD4+ T cells accumu- late in chronic lymphocytic leukaemia with- out affecting disease progression in Eμ- TCL1 mice. Br J Haematol. 2020;189(1):133- 145.
al. CMV-specific CD8+ T-cell function is not impaired in chronic lymphocytic leukemia. Blood. 2014;123(5):717-724.
42. Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12(6):492-499.
43. Ramsay AG, Gribben JG. Immune dysfunc- tion in chronic lymphocytic leukemia T cells and lenalidomide as an immunomodulatory drug. Haematologica. 2009;94(9):1198-1202.
44. DiLillo DJ, Weinberg JB, Yoshizaki A, et al. Chronic lymphocytic leukemia and regula- tory B cells share IL-10 competence and immunosuppressive function. Leukemia. 2013;27(1):170-182.
45. Jadidi-Niaragh F, Ghalamfarsa G, Memarian A, et al. Downregulation of IL-17-producing T cells is associated with regulatory T cell expansion and disease progression in chron- ic lymphocytic leukemia. Tumour Biol. 2013;34(2):929-940.
46. Lee B-N, Gao H, Cohen EN, et al. Treatment with lenalidomide modulates T-cell immunophenotype and cytokine produc- tion in patients with chronic lymphocytic leukemia. Cancer. 2011;117(17):3999-4008.
47. Martens AWJ, Janssen SR, Derks IAM, et al. CD3xCD19 DART molecule treatment induces non-apoptotic killing and is efficient against high-risk chemotherapy and veneto- clax-resistant chronic lymphocytic leukemia cells. J Immunother Cancer. 2020;8(1): e000218.
48.Gajewski TF, Schreiber H, Fu Y-X. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14(10):1014-1022.
49. Kallies A, Good-Jacobson KL. Transcription factor T-bet orchestrates lineage develop- ment and function in the immune system. Trends Immunol. 2017;38(4):287-297.
50.Pearce EL, Mullen AC, Martins GA, et al. Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science. 2003;302(5647):1041-1043.
51. Blank CU, Haining WN, Held W, et al. Defining “T cell exhaustion.” Nat Rev Immunol. 2019;19(11):665-674.
52. Chen Z, Ji Z, Ngiow SF, et al. TCF-1-cen- tered transcriptional network drives an effector versus exhausted CD8 T cell-fate decision. Immunity. 2019;51(5):840-855.e5.
53. Raghu D, Xue H-H, Mielke LA. Control of lymphocyte fate, infection, and tumor immunity by TCF-1. Trends Immunol. 2019;40(12):1149-1162.
54. Brummelman J, Mazza EMC, Alvisi G, et al. High-dimensional single cell analysis identi- fies stem-like cytotoxic CD8+ T cells infil- trating human tumors. J Exp Med. 2018;215(10):2520-2535.
55. Sade-Feldman M, Yizhak K, Bjorgaard SL, et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell. 2018;175(4):998-1013.e20.
56. Scott AC, Dündar F, Zumbo P, et al. TOX is a critical regulator of tumour-specific T cell differentiation. Nature. 2019;571(7764):270- 274.
57. Khan O, Giles JR, McDonald S, et al. TOX transcriptionally and epigenetically pro- grams CD8 + T cell exhaustion. Nature. 2019;571(7764):211-218.
58. Alfei F, Kanev K, Hofmann M, et al. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature. 2019;571(7764):265-269.
59. Yao C, Sun H-W, Lacey NE, et al. Single-cell RNA-seq reveals TOX as a key regulator of CD8 + T cell persistence in chronic infec- tion. Nat Immunol. 2019;20(7):890-901.
60. Seo H, Chen J, González-Avalos E, et al.
18. Laird PW. Cancer epigenetics. Hum Genet. 2005;14(Suppl 1):R65-R76.
Mol
34. Jak M, Mous R, Remmerswaal EBM, et al. Enhanced formation and survival of CD4+ CD25hi Foxp3+ T-cells in chronic lympho- cytic leukemia. Leuk Lymphoma. 2009;50(5):788-801.
35. Görgün G, Holderried TAW, Zahrieh D, Neuberg D, Gribben JG. Chronic lympho- cytic leukemia cells induce changes in gene expression of CD4 and CD8 T cells. J Clin Invest. 2005;115(7):1797-1805.
36. Palma M, Gentilcore G, Heimersson K, et al. T cells in chronic lymphocytic leukemia dis- play dysregulated expression of immune checkpoints and activation markers. Haematologica. 2017;102(3):562-572.
37. Taghiloo S, Allahmoradi E, Tehrani M, et al. Frequency and functional characterization of exhausted CD8+ T cells in chronic lym- phocytic leukemia. Eur J Haematol. 2017;98(6):622-631.
38. Tinhofer I, Weiss L, Gassner F, Rubenzer G, Holler C, Greil R. Difference in the relative distribution of CD4+ T-cell subsets in B-CLL with mutated and unmutated immunoglob- ulin (Ig) VH genes: implication for the course of disease. J Immunother. 2009;32(3):302- 309.
39. Mackus WJM, Frakking FNJ, Grummels A, et al. Expansion of CMV-specific CD8+CD45RA+CD27- T cells in B-cell chronic lymphocytic leukemia. Blood. 2003;102(3):1057-1063.
40. Brusa D, Serra S, Coscia M, et al. The PD- 1/PD-L1 axis contributes to T-cell dysfunc- tion in chronic lymphocytic leukemia. Haematologica. 2013;98(6):953-963.
41. te Raa GD, Pascutti MF, García-Vallejo JJ, et
19. Xanthopoulos C, Kostareli E. Advances in epigenetics and epigenomics in chronic lymphocyticlLeukemia. Curr Genet Med Rep. 2019;7(4):214-226.
20. Guièze R, Wu CJ. Genomic and epigenomic heterogeneity in chronic lymphocytic leukemia. Blood. 2015;126(4):445-453.
21. Kulis M, Merkel A, Heath S, et al. Whole- genome fingerprint of the DNA methylome during human B cell differentiation. Nat Genet. 2015;47(7):746-756.
22. Suarez-Alvarez B, Rodriguez RM, Fraga MF, López-Larrea C. DNA methylation: a prom- ising landscape for immune system-related diseases. Trends Genet. 2012;28(10):506- 514.
23. Pauken KE, Sammons MA, Odorizzi PM, et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science. 2016;354(6316):1160- 1165.
24. Riches JC, Davies JK, McClanahan F, et al. T cells from CLL patients exhibit features of T- cell exhaustion but retain capacity for cytokine production. Blood. 2013;121
32. Catakovic K, Gassner FJ, Ratswohl C, et al. TIGIT expressing CD4+T cells represent a tumor-supportive T cell subset in chronic lymphocytic leukemia. OncoImmunology. 2018;7(1):e1371399.
33. Tromp JM, Tonino SH, Elias JA, et al. Dichotomy in NF-κB signaling and chemoresistance in immunoglobulin vari- able heavy-chain-mutated versus unmutat- ed CLL cells upon CD40/TLR9 triggering. Oncogene. 2010;29(36):5071-5082.
1242
haematologica | 2021; 106(5)


































































































   20   21   22   23   24