Page 160 - 2021_05-Haematologica-web
P. 160

A. Bornert et al.
through megakaryocyte rupture in
response to acute platelet needs. J Cell Biol.
2015;209(3):453-466.
13. Zhang L, Orban M, Lorenz M, et al. A
novel role of sphingosine 1-phosphate receptor S1pr1 in mouse thrombopoiesis. J Exp Med. 2012;209(12):2165-2181.
14. Zhang L, Urtz N, Gaertner F, et al. Sphingosine kinase 2 (Sphk2) regulates platelet biogenesis by providing intracellu- lar sphingosine 1-phosphate (S1P). Blood. 2013;122(5):791-802.
15. Leven RM, Yee MK. Megakaryocyte mor- phogenesis stimulated in vitro by whole and partially fractionated thrombocy- topenic plasma: a model system for the study of platelet formation. Blood. 1987; 69(4):1046-1052.
16. Radley JM, Haller CJ. The demarcation membrane system of the megakaryocyte: a misnomer? Blood. 1982;60(1):213-219.
17.Italiano JE, Jr., Lecine P, Shivdasani RA, Hartwig JH. Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes. J Cell Biol. 1999; 147(6):1299-1312.
18. Eckly A, Strassel C, Cazenave JP, Lanza F, Leon C, Gachet C. Characterization of megakaryocyte development in the native bone marrow environment. Methods Mol Biol. 2012;788:175-192.
19. Pouli D, Tozzi L, Alonzo CA, et al. Label free monitoring of megakaryocytic devel- opment and proplatelet formation in vitro. Biomed Opt Express. 2017;8(10):4742- 4755.
20.Thiery JP, Bessis M. Genesis of blood platelets from the megakaryocytes in living cells. C R Hebd Seances Acad Sci. 1956;242(2):290-292.
21.Tablin F, Castro M, Leven RM. Blood platelet formation in vitro. The role of the cytoskeleton in megakaryocyte fragmenta- tion. J Cell Sci. 1990;97(Pt 1):59-70.
22. Ghalloussi D, Dhenge A, Bergmeier W. New insights into cytoskeletal remodeling during platelet production. J Throm Haemost. 2019;17(9).
23. Poulter NS, Thomas SG. Cytoskeletal regu- lation of platelet formation: coordination of F-actin and microtubules. Tint J Biochem Cell Biol. 2015;66:69-74.
24.Patel SR, Richardson JL, Schulze H, et al. Differential roles of microtubule assembly and sliding in proplatelet formation by megakaryocytes. Blood. 2005;106(13): 4076-4085.
25. Handagama PJ, Feldman BF, Jain NC, Farver TB, Kono CS. In vitro platelet release by rat megakaryocytes: effect of metabolic inhibitors and cytoskeletal disrupting agents. Am J Vet Res. 1987;48(7):1142-
1146.
26.Eckly A, Rinckel JY, Laeuffer P, et al.
Proplatelet formation deficit and megakaryocyte death contribute to throm- bocytopenia in Myh9 knockout mice. J Thromb Haemost. 2010;8(10):2243-2251.
27.Eckly A, Strassel C, Freund M, et al. Abnormal megakaryocyte morphology and proplatelet formation in mice with megakaryocyte-restricted MYH9 inactiva- tion. Blood. 2009;113(14):3182-3189.
28.Pertuy F, Aguilar A, Strassel C, et al. Broader expression of the mouse platelet factor 4-cre transgene beyond the megakaryocyte lineage. J Thromb Haemost. 2015;13(1):115-125.
29. Stegner D, vanEeuwijk JMM, Angay O, et al. Thrombopoiesis is spatially regulated by the bone marrow vasculature. Nat Commun. 2017;8(1):127.
30. Strassel C, Eckly A, Leon C, et al. Hirudin and heparin enable efficient megakary- ocyte differentiation of mouse bone mar- row progenitors. Exp Cell Res. 2012;318(1):25-32.
31. Behnke O, Forer A. From megakaryocytes to platelets: platelet morphogenesis takes place in the bloodstream. Eur J Haematol Suppl 1998;61:S3-23.
32. Pertuy F, Eckly A, Weber J, et al. Myosin IIA is critical for organelle distribution and F- actin organization in megakaryocytes and platelets. Blood. 2014;123(8):1261-1269.
33. Schwer HD, Lecine P, Tiwari S, Italiano JE Jr., Hartwig JH, Shivdasani RA. A lineage- restricted and divergent beta-tubulin iso- form is essential for the biogenesis, struc- ture and function of blood platelets. Curr Biol. 2001;11(8):579-586.
34. Popel AS, Johnson PC. Microcirculation and hemorheology. Ann Rev Fluid Mech. 2005;37:43-69.
35. Pries AR, Secomb TW. Microvascular blood viscosity in vivo and the endothelial surface layer. Am J Physiol Heart Circ Physiol. 2005; 289(6):H2657-2664.
36. Lipowsky HH. Microvascular rheology and hemodynamics. Microcirculation. 2005; 12(1):5-15.
37. Borghi N, Brochard-Wyart F. Tether extru- sion from red blood cells: integral proteins unbinding from cytoskeleton. Biophys J. 2007;93(4):1369-1379.
38. Hochmuth RM, Marcus WD. Membrane tethers formed from blood cells with avail- able area and determination of their adhe- sion energy. Biophys J. 2002;82(6):2964- 2969.
39. Shao JY, Hochmuth RM. Micropipette suc- tion for measuring piconewton forces of adhesion and tether formation from neu- trophil membranes. Biophys J. 1996;71 (5):2892-2901.
40. Shin JW, Swift J, Spinler KR, Discher DE. Myosin-II inhibition and soft 2D matrix maximize multinucleation and cellular pro- jections typical of platelet-producing megakaryocytes. Proc Natl Acad Sci U S A. 2011;108(28):11458-11463.
41. Spinler KR, Shin JW, Lambert MP, Discher DE. Myosin-II repression favors pre/pro- platelets but shear activation generates platelets and fails in macrothrombocytope- nia. Blood. 2015;125(3):525-533.
42. Bixel MG, Kusumbe AP, Ramasamy SK, et al. Flow dynamics and HSPC homing in bone marrow microvessels. Cell Rep. 2017; 18(7):1804-1816.
43. Mazo IB, von Andrian UH. Adhesion and homing of blood-borne cells in bone mar- row microvessels. J Leukoc Biol. 1999;66(1):25-32.
44. Chao Y, Ye P, Zhu L, et al. Low shear stress induces endothelial reactive oxygen species via the AT1R/eNOS/NO pathway. J Cell Physiol. 2018;233(2):1384-1395.
45.Dent EW, Baas PW. Microtubules in neu- rons as information carriers. J Neurochem. 2014;129(2):235-239.
46. Radley JM, Scurfield G. The mechanism of platelet release. Blood. 1980;56(6):996- 999.
47. Dogterom M, Yurke B. Measurement of the force-velocity relation for growing micro- tubules. Science. 1997;278(5339):856-860.
48. Kolomeisky AB, Fisher ME. Force-velocity relation for growing microtubules. Biophys J. 2001;80(1):149-154.
49. Vleugel M, Kok M, Dogterom M. Understanding force-generating micro- tubule systems through in vitro reconstitu- tion. Cell Adh Migr. 2016;10(5):475-494. through in vitro reconstitution. Cell Adh Migr. 2016;10(5):475-494.
50.Bender M, Eckly A, Hartwig JH, et al. ADF/n-cofilin-dependent actin turnover determines platelet formation and sizing. Blood. 2010;116(10):1767-1775.
51. Dunois-Larde C, Capron C, Fichelson S, Bauer T, Cramer-Borde E, Baruch D. Exposure of human megakaryocytes to high shear rates accelerates platelet produc- tion. Blood. 2009;114(9):1875-1883.
52. Gauthier NC, Masters TA, Sheetz MP. Mechanical feedback between membrane tension and dynamics. Trends Cell Biol. 2012;22(10):527-535.
53. Wang G, Galli T. Reciprocal link between cell biomechanics and exocytosis. Traffic. 2018;19(10):741-749.
54. Thon JN, Italiano JE. Platelet formation. Semin Hematol. 2010;47(3):220-226.
55. Strassel C, Eckly A, Leon C, et al. Intrinsic impaired proplatelet formation and micro- tubule coil assembly of megakaryocytes in a mouse model of Bernard-Soulier syn-
1380
haematologica | 2021; 106(5)


































































































   158   159   160   161   162