Page 83 - 2021_03-Haematologica-web
P. 83

Immunoprofiling and survival in DLBCL
Immunol. 2015;15(8):486-499.
16. Booman M, Douwes J, Glas AM, et al.
Mechanisms and effects of loss of human leukocyte antigen class II expression in immune-privileged site-associated B-cell lymphoma. Clin Cancer Res. 2006;12(9): 2698-2705.
17. Challa-Malladi M, Lieu YK, Califano O, et al. Combined genetic inactivation of beta2- Microglobulin and CD58 reveals frequent escape from immune recognition in diffuse large B cell lymphoma. Cancer Cell. 2011;20 (6):728-740.
18. Nijland M, Veenstra RN, Visser L, et al. HLA dependent immune escape mechanisms in B-cell lymphomas: Implications for immune checkpoint inhibitor therapy? Oncoimmunology. 2017;6(4):e1295202.
19. Riemersma SA, Jordanova ES, Schop RF, et al. Extensive genetic alterations of the HLA region, including homozygous deletions of HLA class II genes in B-cell lymphomas aris- ing in immune-privileged sites. Blood. 2000;96(10):3569-3577.
20. Rimsza LM, Roberts RA, Miller TP, et al. Loss of MHC class II gene and protein expression in diffuse large B-cell lymphoma is related to decreased tumor immunosur- veillance and poor patient survival regard- less of other prognostic factors: a follow-up study from the Leukemia and Lymphoma Molecular Profiling Project. Blood. 2004;103(11):4251-4258.
21. Holte H, Leppa S, Bjorkholm M, et al. Dose- densified chemoimmunotherapy followed by systemic central nervous system prophy- laxis for younger high-risk diffuse large B- cell/follicular grade 3 lymphoma patients: results of a phase II Nordic Lymphoma Group study. Ann Oncol. 2013;24(5):1385- 1392.
22. Leppa S, Joergensen J, Tierens A, et al. Dose- dense chemoimmunotherapy including early CNS prophylaxis for high-risk DLBCL. Final analysis from a Nordic Phase II study (the CHIC trial). Blood. 2016;128(22):1854.
23. Leivonen SK, Pollari M, Bruck O, et al. T-cell inflamed tumor microenvironment predicts favorable prognosis in primary testicular lymphoma. Haematologica. 2019;104(2): 338-346.
24. Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quanti- tative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7):Research0034.
25. Carpenter AE, Jones TR, Lamprecht MR, et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006;7(10):R100.
26. Hans CP, Weisenburger DD, Greiner TC, et al. Confirmation of the molecular classifica- tion of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103(1):275-282.
27. Newman AM, Steen CB, Liu CL, et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol. 2019;37(7):773- 782.
28.Monti S, Savage KJ, Kutok JL, et al. Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflam- matory response. Blood. 2005;105(5):1851- 1861.
29. Dysvik B, Jonassen I. J-Express: exploring gene expression data using Java. Bioinformatics. 2001;17(4):369-370.
30. Xu-Monette ZY, Zhou J, Young KH. PD-1 expression and clinical PD-1 blockade in B- cell lymphomas. Blood. 2018;131(1):68-83.
31.Josefsson SE, Beiske K, Blaker YN, et al. TIGIT and PD-1 mark intratumoral T cells with reduced effector function in B-cell non- Hodgkin lymphoma. Cancer Immunol Res. 2019;7(3):355-362.
32. Chen BJ, Dashnamoorthy R, Galera P, et al. The immune checkpoint molecules PD-1, PD-L1, TIM-3 and LAG-3 in diffuse large B- cell lymphoma. Oncotarget. 2019; 10(21):2030-2040.
33. Xiong H, Mittman S, Rodriguez R, et al. Coexpression of inhibitory receptors enrich- es for activated and functional CD8(+) T cells in murine syngeneic tumor models. Cancer Immunol Res. 2019;7(6):963-976.
34. Lesokhin AM, Ansell SM, Armand P, et al. Nivolumab in patients with relapsed or refractory hematologic malignancy: prelimi- nary results of a Phase Ib study. J Clin Oncol. 2016;34(23):2698-2704.
35.Ansell SM, Hurvitz SA, Koenig PA, et al. Phase I study of ipilimumab, an anti-CTLA- 4 monoclonal antibody, in patients with relapsed and refractory B-cell non-Hodgkin lymphoma. Clin Cancer Res. 2009; 15(20):6446-6453.
36. Ansell SM, Minnema MC, Johnson P, et al. Nivolumab for relapsed/refractory diffuse large B-cell lymphoma in patients ineligible for or having failed autologous transplanta- tion: a single-arm, Phase II study. J Clin Oncol. 2019;37(6):481-489.
37. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immuni- ty. J Exp Med. 2010;207(10):2187-2194.
38. Koyama S, Akbay EA, Li YY, et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun. 2016;7:10501.
39.Fourcade J, Sun Z, Benallaoua M, et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med. 2010;207(10):2175- 2186.
40. Zhou Q, Munger ME, Veenstra RG, et al. Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood. 2011;117(17):4501-4510.
41.Hill BT, Roberts ZJ, Rossi JM, Smith MR. Marked re-expansion of chimeric antigen receptor (CAR) T cells and tumor regression following nivolumab treatment in a patient treated with axicabtagene ciloleucel (axi-cel; KTE-C19) for refractory diffuse large B cell lymphoma (DLBCL). Blood. 2017;130(Suppl 1):2825.
42. Filion LG, Izaguirre CA, Garber GE, Huebsh L, Aye MT. Detection of surface and cyto- plasmic CD4 on blood monocytes from nor- mal and HIV-1 infected individuals. J Immunol Methods. 1990;135(1-2):59-69.
43. O'Doherty U, Steinman RM, Peng M, et al. Dendritic cells freshly isolated from human blood express CD4 and mature into typical immunostimulatory dendritic cells after cul- ture in monocyte-conditioned medium. J Exp Med. 1993;178(3):1067-1076.
44. Valentin A, Rosati M, Patenaude DJ, et al. Persistent HIV-1 infection of natural killer cells in patients receiving highly active anti- retroviral therapy. Proc Natl Acad Sci U S A. 2002;99(10):7015-7020.
45. Alvaro T, Lejeune M, Salvado MT, et al. Outcome in Hodgkin's lymphoma can be predicted from the presence of accompany- ing cytotoxic and regulatory T cells. Clin Cancer Res. 2005;11(4):1467-1473.
46. Koreishi AF, Saenz AJ, Persky DO, et al. The role of cytotoxic and regulatory T cells in relapsed/refractory Hodgkin lymphoma. Appl Immunohistochem Mol Morphol. 2010;18(3):206-211.
47.
Oudejans JJ, Jiwa NM, Kummer JA, et al. Activated cytotoxic T cells as prognostic marker in Hodgkin's disease. Blood. 1997;89(4):1376-1382.
48.Muris JJ, Meijer CJ, Cillessen SA, et al. Prognostic significance of activated cytotox- ic T-lymphocytes in primary nodal diffuse large B-cell lymphomas. Leukemia. 2004; 18(3):589-596.
49.
50.
51.
Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G. Immunological aspects of can- cer chemotherapy. Nat Rev Immunol. 2008;8(1):59-73.
Carreras J, Lopez-Guillermo A, Fox BC, et al. High numbers of tumor-infiltrating FOXP3- positive regulatory T cells are associated with improved overall survival in follicular lymphoma. Blood. 2006;108(9):2957-2964. Tzankov A, Meier C, Hirschmann P, Went P, Pileri SA, Dirnhofer S. Correlation of high numbers of intratumoral FOXP3+ regulatory T cells with improved survival in germinal center-like diffuse large B-cell lymphoma, follicular lymphoma and classical Hodgkin's lymphoma. Haematologica. 2008;93(2):193- 200.
haematologica | 2021; 106(3)
729


































































































   81   82   83   84   85