Page 23 - 2021_03-Haematologica-web
P. 23

Targeting of FLT3 AML
References
1. Grimwade D, Ivey A, Huntly BJP. Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance. Blood. 2016;127(1):29-41.
2.Döhner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424-447.
3.Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209-2221.
4.Tyner JW, Tognon CE, Bottomly D, et al. Functional genomic landscape of acute myeloid leukaemia. Nature. 2018;562(7728): 526-531.
5.Shlush LI, Zandi S, Mitchell A, et al. Identification of pre-leukaemic haematopoi- etic stem cells in acute leukaemia. Nature. 2014;506(7488):328-333.
6. Guryanova OA, Shank K, Spitzer B, et al. DNMT3A mutations promote anthracycline resistance in acute myeloid leukemia via impaired nucleosome remodeling. Nat Med. 2016;22(12):1488-1495.
7.Busque L, Patel JP, Figueroa ME, et al. Recurrent somatic TET2 mutations in nor- mal elderly individuals with clonal hematopoiesis. Nat Genet. 2012;44(11): 1179-1181.
8. Genovese G, Kähler AK, Handsaker RE, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371(26):2477-2487.
9. Gillies RJ, Verduzco D, Gatenby RA. Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nat Rev Cancer. 2012;12(7):487-493.
10.Ley TJ, Mardis ER, Ding L, et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature. 2008;456(7218):66-72.
11. Nakao M, Yokota S, Iwai T, et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia. 1996;10(12):1911-1918.
12. Thiede C, Steudel C, Mohr B, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: associa- tion with FAB subtypes and identification of subgroups with poor prognosis. Blood. 2002;99(12):4326-4335.
13. Brunet S, Labopin M, Esteve J, et al. Impact of FLT3 internal tandem duplication on the outcome of related and unrelated hematopoietic transplantation for adult acute myeloid leukemia in first remission: a retrospective analysis. J Clin Oncol. 2012;30 (7):735-741.
14. Choudhary C, Brandts C, Schwable J, et al. Activation mechanisms of STAT5 by onco- genic Flt3-ITD. Blood. 2007;110(1):370-374.
15. Kiyoi H, Towatari M, Yokota S, et al. Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia. 1998;12(9):1333-1337.
16. Lee BH, Tothova Z, Levine RL, et al. FLT3 mutations confer enhanced proliferation and survival properties to multipotent progeni- tors in a murine model of chronic myelomonocytic leukemia. Cancer Cell. 2007;12(4):367-380.
17.Smith CC, Wang Q, Chin C-S, et al. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature. 2012;485(7397):260-263.
18.Kindler T, Lipka DB, Fischer T. FLT3 as a therapeutic target in AML: still challenging after all these years. Blood. 2010;116(24): 5089-5102.
19.Daver N, Kantarjian H. FLT3 inhibition in acute myeloid leukaemia. Lancet Oncol. 2017;18(8):988-989.
20. Zarrinkar PP, Gunawardane RN, Cramer MD, et al. AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood. 2009;114(14):2984-2992.
21. Mori M, Kaneko N, Ueno Y, et al. Gilteritinib, a FLT3/AXL inhibitor, shows antileukemic activity in mouse models of FLT3 mutated acute myeloid leukemia. Invest New Drugs. 2017;35(5):556-565.
22.Davis MI, Hunt JP, Herrgard S, et al. Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol. 2011;29(11): 1046-1051.
23. Stone RM, DeAngelo DJ, Klimek V, et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood. 2005;105(1):54-60.
24.Fischer T, Stone RM, DeAngelo DJ, et al. Phase IIB trial of oral midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J Clin Oncol. 2010;28(28):4339-4345.
25. Smith BD, Levis M, Beran M, et al. Single- agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood. 2004;103(10): 3669-3676.
26. Knapper S, Burnett AK, Littlewood T, et al. A phase 2 trial of the FLT3 inhibitor lestaur- tinib (CEP701) as first-line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemothera- py. Blood. 2006;108(10):3262-3270.
27. Levis M, Ravandi F, Wang ES, et al. Results from a randomized trial of salvage chemotherapy followed by lestaurtinib for patients with FLT3 mutant AML in first relapse. Blood. 2011;117(12):3294-3301.
28. Knapper S, Russell N, Gilkes A, et al. A ran- domized assessment of adding the kinase inhibitor lestaurtinib to first-line chemother- apy for FLT3-mutated AML. Blood. 2017;129(9):1143-1154.
29.Zhang W, Konopleva M, Shi Y-X, et al. Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia. J Natl Cancer Inst. 2008;100(3):184-198.
30.Safaian NN, Czibere A, Bruns I, et al. Sorafenib (Nexavar) induces molecular remission and regression of extramedullary disease in a patient with FLT3-ITD+ acute myeloid leukemia. Leukemia Res. 2009;33(2):348-350.
31.Metzelder S, Wang Y, Wollmer E, et al. Compassionate use of sorafenib in FLT3- ITD-positive acute myeloid leukemia: sus- tained regression before and after allogeneic stem cell transplantation. Blood. 200;113(26):6567-6571.
32. Metzelder SK, Schroeder T, Finck A, et al. High activity of sorafenib in FLT3-ITD-posi- tive acute myeloid leukemia synergizes with allo-immune effects to induce sustained responses. Leukemia. 2012;26(11):2353- 2359.
33. Metzelder SK, Schroeder T, Lübbert M, et al. Long-term survival of sorafenib-treated FLT3-ITD-positive acute myeloid leukaemia
patients relapsing after allogeneic stem cell transplantation. Eur J Cancer. 2017;86:233- 239.
34.Cortes JE, Khaled SK, Martinelli G, et al. Efficacy and safety of single-agent quizar- tinib (Q), a potent and selective FLT3 inhibitor (FLT3i), in patients (pts) with FLT3- internal tandem duplication (FLT3-ITD)- mutated relapsed/refractory (R/R) acute myeloid leukemia (AML) enrolled in the global, phase 3, randomized controlled Quantum-R trial. Blood. 2018;132(Suppl 1):563-563.
35.Perl AE, Martinelli G, Cortes JE, et al. Gilteritinib or chemotherapy for relapsed or refractory FLT3-mutated AML. N Engl J Med. 2019;381(18):1728-1740.
36. Baker SD, Zimmerman EI, Wang Y-D, et al. Emergence of polyclonal FLT3 tyrosine kinase domain mutations during sequential therapy with sorafenib and sunitinib in FLT3-ITD-positive acute myeloid leukemia. Clin Cancer Res. 2013;19(20):5758-5768.
37. Piloto O, Wright M, Brown P, Kim K-T, Levis M, Small D. Prolonged exposure to FLT3 inhibitors leads to resistance via activation of parallel signaling pathways. Blood. 2007;109(4):1643-1652.
38. Metzelder SK, Michel C, Bonin von M, et al. NFATc1 as a therapeutic target in FLT3-ITD- positive AML. Leukemia. 2015;29(7):1470- 1477.
39.Pratz KW, Sato T, Murphy KM, Stine A, Rajkhowa T, Levis M. FLT3-mutant allelic burden and clinical status are predictive of response to FLT3 inhibitors in AML. Blood. 2010;115(7):1425-1432.
40. Smith CC, Levis MJ, Perl AE, et al. Emerging mutations at relapse in patients with FLT3- mutated relapsed/refractory acute myeloid leukemia who received gilteritinib therapy in the phase 3 Admiral trial. Blood. 2019;134(Suppl 1):14.
41. Cortes JE, Khaled S, Martinelli G, et al. Quizartinib versus salvage chemotherapy in relapsed or refractory FLT3-ITD acute myeloid leukaemia (QuANTUM-R): a mul- ticentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2019;20(7):984- 997.
42.Röllig C, Serve H, Hüttmann A, et al. Addition of sorafenib versus placebo to stan- dard therapy in patients aged 60 years or younger with newly diagnosed acute myeloid leukaemia (SORAML): a multicen- tre, phase 2, randomised controlled trial. Lancet Oncol. 2015;16(16):1691-1699.
43. Stone RM, Mandrekar SJ, Sanford BL, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017;377(5):454-464.
44. Huntly BJP, Shigematsu H, Deguchi K, et al. MOZ-TIF2, but not BCR-ABL, confers prop- erties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell. 2004;6(6):587-596.
45.Chu SH, Heiser D, Li L, et al. FLT3-ITD knockin impairs hematopoietic stem cell quiescence/homeostasis, leading to myelo- proliferative neoplasm. Cell Stem Cell. 2012;11(3):346-358.
46. Serve H, Krug U, Wagner R, et al. Sorafenib in combination with intensive chemothera- py in elderly patients with acute myeloid leukemia: results from a randomized, place- bo-controlled trial. J Clin Oncol. 2013;31 (25):3110-3118.
47.Hu S, Niu H, Inaba H, Orwick S, et al. Activity of the multikinase inhibitor sorafenib in combination with cytarabine in acute myeloid leukemia. J Natl Cancer Inst.
haematologica | 2021; 106(3)
669


































































































   21   22   23   24   25