Page 89 - 2021_02-Haematologica-web
P. 89
C-FGF23 peptide alleviates hypoferremia
model for human familial hypophos- phatemic (vitamin D-resistant) rickets. Proc Natl Acad Sci U S A. 1976;73(12):4667-4671.
22. Loffing J, Lotscher M, Kaissling B, et al. Renal Na/H exchanger NHE-3 and Na-PO4 cotransporter NaPi-2 protein expression in glucocorticoid excess and deficient states. J Am Soc Nephrol. 1998;9(9):1560-1567.
23. Strom TM, Francis F, Lorenz B, et al. Pex gene deletions in Gy and Hyp mice provide mouse models for X-linked hypophos- phatemia. Hum Mol Genet. 1997;6(2):165- 171.
24. Martin A, David V, Quarles LD. Regulation and function of the FGF23/klotho endocrine pathways. Physiol Rev. 2012;92(1):131-155.
25. Faul C, Amaral AP, Oskouei B, et al. FGF23 induces left ventricular hypertrophy. J Clin Invest. 2011;121(11):4393-4408.
26. Bacic D, Capuano P, Baum M, et al. Activation of dopamine D1-like receptors induces acute internalization of the renal Na+/phosphate cotransporter NaPi-IIa in mouse kidney and OK cells. Am J Physiol Renal Physiol. 2005;288(4):F740-F747.
27. Goetz R, Nakada Y, Hu MC, et al. Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23- FGFR-Klotho complex formation. Proc Natl Acad Sci U S A. 2010;107(1):407-412.
28. Moe OW, Tejedor A, Levi M, Seldin DW, Preisig PA, Alpern RJ. Dietary NaCl modu- lates Na(+)-H+ antiporter activity in renal cortical apical membrane vesicles. Am J Physiol. 1991;260(1 Pt 2):F130-137.
29. Agoro R, Montagna A, Goetz R, et al. Inhibition of fibroblast growth factor 23 (FGF23) signaling rescues renal anemia. FASEB J. 2018;32(7):3752-3764.
30. Agoro R, Taleb M, Quesniaux VFJ, Mura C. Cell iron status influences macrophage polar- ization. PLoS One. 2018; 13(5):e0196921.
31. Barry M, Sherlock S. Measurement of liver- iron concentration in needle-biopsy speci- mens. Lancet. 1971;1(7690):100-103.
32. Pigeon C, Ilyin G, Courselaud B, et al. A new mouse liver-specific gene, encoding a protein homologous to human antimicro- bial peptide hepcidin, is overexpressed dur- ing iron overload. J Biol Chem. 2001;276(11):7811-7819.
33. Rishi G, Wallace DF, Subramaniam VN. Hepcidin: regulation of the master iron reg- ulator. Biosci Rep. 2015;35(3).
34. Flo TH, Smith KD, Sato S, et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature. 2004;432(7019):917-21.
35. Faquin WC, Schneider TJ, Goldberg MA. Effect of inflammatory cytokines on hypoxia-induced erythropoietin produc- tion. Blood. 1992;79(8):1987-1994.
36. Frede S, Fandrey J, Pagel H, Hellwig T, Jelkmann W. Erythropoietin gene expres- sion is suppressed after lipopolysaccharide or interleukin-1 beta injections in rats. Am J Physiol. 1997;273(3 Pt 2):R1067-1071.
37. Vannucchi AM, Grossi A, Rafanelli D, Statello M, Cinotti S, Rossi-Ferrini P. Inhibition of erythropoietin production in vitro by human interferon gamma. Br J Haematol. 1994;87(1):18-23.
38. Goetz R, Beenken A, Ibrahimi OA, et al. Molecular insights into the klotho-depen- dent, endocrine mode of action of fibrob- last growth factor 19 subfamily members. Mol Cell Biol. 2007;27(9):3417-3428.
39. Rivera S, Nemeth E, Gabayan V, Lopez MA, Farshidi D, Ganz T. Synthetic hep-
cidin causes rapid dose-dependent hypofer- remia and is concentrated in ferroportin- containing organs. Blood. 2005;106(6): 2196-2199.
40. Haase VH. Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev. 2013; 27(1):41-53.
41. Ward RJ, Crichton RR, Taylor DL, Della Corte L, Srai SK, Dexter DT. Iron and the immune system. J Neural Transm (Vienna). 2011;118(3):315-328.
42. Hennigar SR, McClung JP. Nutritional immunity: starving pathogens of trace min- erals. Am J Lifestyle Med. 2016;10(3):170- 173.
43. Ganz T. Hepcidin and iron regulation, 10 years later. Blood. 2011;117(17):4425-4433. 44. Agoro R, Mura C. Inflammation-induced up-regulation of hepcidin and down-regu- lation of ferroportin transcription are dependent on macrophage polarization. Blood Cells, Molecules and Diseases.
2016;61:16-25.
45. Hanudel MR, Laster M, Salusky IB. Non-
renal-related mechanisms of FGF23 patho- physiology. Curr Osteoporos Rep. 2018;16(6):724-729.
46. Han X, Li L, Yang J, King G, Xiao Z, Quarles LD. Counter-regulatory paracrine actions of FGF-23 and 1,25(OH)2 D in macrophages. FEBS Lett. 2016;590(1):53-67.
47. Babitt JL, Sitara D. Crosstalk between fibroblast growth factor 23, iron, erythro- poietin, and inflammation in kidney dis- ease. Curr Opin Nephrol Hypertens. 2019;28(4):304-310.
48. Gattineni J, Bates C, Twombley K, et al. FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am J Physiol Renal Physiol. 2009; 297(2):F282-F291.
49. Razzaque MS, Sitara D, Taguchi T, St- Arnaud R, Lanske B. Premature aging-like phenotype in fibroblast growth factor 23 null mice is a vitamin D-mediated process. FASEB J. 2006;20(6):720-722.
50. Shimada T, Kakitani M, Yamazaki Y, et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 2004;113(4):561-568.
51. Leaf DE, Siew ED, Eisenga MF, et al. Fibroblast growth factor 23 associates with death in critically ill patients. Clin J Am Soc Nephrol. 2018;13(4):531-541.
52. Clinkenbeard EL, Hanudel MR, Stayrook KR, et al. Erythropoietin stimulates murine and human fibroblast growth factor-23, revealing novel roles for bone and bone marrow. Haematologica. 2017; 102(11):e427-e430.
53. Coe LM, Madathil SV, Casu C, Lanske B, Rivella S, Sitara D. FGF-23 is a negative reg- ulator of prenatal and postnatal erythro- poiesis. J Biol Chem. 2014;289(14):9795- 9810.
54. Daryadel A, Bettoni C, Haider T, et al. Erythropoietin stimulates fibroblast growth factor 23 (FGF23) in mice and men. Pflugers Arch. 2018;470(10):1569-1582.
55. Hanudel MR, Eisenga MF, Rappaport M, et al. Effects of erythropoietin on fibroblast growth factor 23 in mice and humans. Nephrol Dial Transplant. 2019;34(12):2057- 2065.
56. Imel EA, Peacock M, Gray AK, Padgett LR, Hui SL, Econs MJ. Iron modifies plasma FGF23 differently in autosomal dominant hypophosphatemic rickets and healthy
humans. J Clin Endocrinol Metab.
2011;96(11):3541-3549.
57. Nam KH, Kim H, An SY, et al. Circulating
fibroblast growth factor-23 levels are associ- ated with an increased risk of anemia devel- opment in patients with nondialysis chronic kidney disease. Sci Rep. 2018;8 (1):7294.
58. Singh S, Grabner A, Yanucil C, et al. Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease. Kidney Int. 2016;90(5):985-996.
59. Durlacher-Betzer K, Hassan A, Levi R, Axelrod J, Silver J, Naveh-Many T. Interleukin-6 contributes to the increase in fibroblast growth factor 23 expression in acute and chronic kidney disease. Kidney Int. 2018;94(2):315-325.
60. Onal M, Carlson AH, Thostenson JD, et al. A novel distal enhancer mediates inflamma- tion-, PTH-, and early onset murine kidney disease-induced expression of the mouse Fgf23 gene. JBMR Plus. 2018;2(1):32-47.
61. Richter B, Faul C. FGF23 actions on target tissues-with and without Klotho. Front Endocrinol (Lausanne). 2018;9:189.
62. Krick S, Grabner A, Baumlin N, et al. Fibroblast growth factor 23 and Klotho contribute to airway inflammation. Eur Respir J. 2018;52(1).
63.
64.
65.
66.
67.
68. 69. 70.
71.
72.
Ikeda S, Yamamoto H, Masuda M, et al. Downregulation of renal type IIa sodium- dependent phosphate cotransporter during lipopolysaccharide-induced acute inflam- mation. Am J Physiol Renal Physiol. 2014;306(7):F744-F750.
Abu-Amer Y, Ross FP, Edwards J, Teitelbaum SL. Lipopolysaccharide-stimu- lated osteoclastogenesis is mediated by tumor necrosis factor via its P55 receptor. J Clin Invest. 1997;100(6):1557-1565.
Bansal S, Friedrichs WE, Velagapudi C, et al. Spleen contributes significantly to increased circulating levels of fibroblast growth factor 23 in response to lipopolysaccharide- induced inflammation. Nephrol Dial Transplant. 2017;32(6):960-968.
Masuda Y, Ohta H, Morita Y, et al. Expression of Fgf23 in activated dendritic cells and macrophages in response to immunological stimuli in mice. Biol Pharm Bull. 2015;38(5):687-693.
Okada S, Yoshida T, Hong Z, et al. Impairment of B lymphopoiesis in preco- cious aging (klotho) mice. Int Immunol. 2000;12(6):861-871.
Deschemin JC, Vaulont S. Role of hepcidin in the setting of hypoferremia during acute inflammation. PLoS One. 2013;8(4):e61050. Wang CY, Babitt JL. Hepcidin regulation in the anemia of inflammation. Curr Opin Hematol. 2016;23(3):189-197.
Srai SK, Chung B, Marks J, et al. Erythropoietin regulates intestinal iron absorption in a rat model of chronic renal failure. Kidney Int. 2010;78(7):660-667. Mastrogiannaki M, Matak P, Keith B, Simon MC, Vaulont S, Peyssonnaux C. HIF-2alpha, but not HIF-1alpha, promotes iron absorption in mice. J Clin Invest. 2009;119(5):1159-1166.
Taylor M, Qu A, Anderson ER, et al. Hypoxia-inducible factor-2alpha mediates the adaptive increase of intestinal ferro- portin during iron deficiency in mice. Gastroenterology. 2011;140(7):2044-2055.
73.Arezes J, Foy N, McHugh K, et al. Erythroferrone inhibits the induction of hepcidin by BMP6. Blood. 2018;132(14): 1473-1477.
haematologica | 2021; 106(2)
403