Page 49 - 2020_11-Haematologica-web
P. 49

Pediatric acute lymphoblastic leukemia
Philadelphia chromosome-positive acute lymphoblastic leukemia: results of Children's Oncology Group Trial AALL0622. J Clin Oncol. 2018;36(22)2306- 2314.
43. Lilljebjorn H, Henningsson R, Hyrenius- Wittsten A, et al. Identification of ETV6- RUNX1-like and DUX4-rearranged sub- types in paediatric B-cell precursor acute lymphoblastic leukaemia. Nat Commun. 2016;7:11790.
44. Zaliova M, Kotrova M, Bresolin S, et al. ETV6/RUNX1-like acute lymphoblastic leukemia: a novel B-cell precursor leukemia subtype associated with the CD27/CD44 immunophenotype. Genes Chromosomes Cancer. 2017;56(8):608-616.
45. Yasuda T, Tsuzuki S, Kawazu M, et al. Recurrent DUX4 fusions in B cell acute lym- phoblastic leukemia of adolescents and young adults. Nat Genet. 2016;48(5):569- 574.
46. Zaliova M, Stuchly J, Winkowska L, et al. Genomic landscape of pediatric B-other acute lymphoblastic leukemia in a consecu- tive European cohort. Haematologica. 2019;104(7):1396-1406.
47. Li JF, Dai YT, Lilljebjorn H, et al. Transcriptional landscape of B cell precursor acute lymphoblastic leukemia based on an international study of 1,223 cases. Proc Natl Acad Sci U S A. 2018;115(50):e11711- e11720.
48. Alexander TB, Gu Z, Iacobucci I, et al. The genetic basis and cell of origin of mixed phe- notype acute leukaemia. Nature. 2018;562(7727):373-379.
49. Griffith M, Griffith OL, Krysiak K, et al. Comprehensive genomic analysis reveals FLT3 activation and a therapeutic strategy for a patient with relapsed adult B-lym- phoblastic leukemia. Exp Hematol. 2016;44(7):603-613.
50. Oberley MJ, Gaynon PS, Bhojwani D, et al. Myeloid lineage switch following chimeric antigen receptor T-cell therapy in a patient with TCF3-ZNF384 fusion-positive B-lym- phoblastic leukemia. Pediatr Blood Cancer. 2018;65(9):e27265.
51. Gu Z, Churchman M, Roberts K, et al. Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia. Nat Comm. 2016;7(13331).
52. Suzuki K, Okuno Y, Kawashima N, et al. MEF2D-BCL9 fusion gene is associated with high-risk acute B-cell precursor lymphoblas- tic leukemia in adolescents. J Clin Oncol. 2016;34(28):3451-3459.
53. Ohki K, Kiyokawa N, Saito Y, et al. Clinical and molecular characteristics of MEF2D fusion-positive B-cell precursor acute lym- phoblastic leukemia in childhood, including a novel translocation resulting in MEF2D- HNRNPH1 gene fusion. Haematologica. 2019;104(1):128-137.
54.Schwab C, Nebral K, Chilton L, et al. Intragenic amplification of PAX5: a novel subgroup in B-cell precursor acute lym- phoblastic leukemia? Blood Adv. 2017;1(19): 1473-1477.
55. Passet M, Boissel N, Sigaux F, et al. PAX5 P80R mutation identifies a novel subtype of B-cell precursor acute lymphoblastic leukemia with favorable outcome. Blood. 2019;133(3):280-284.
56. Churchman ML, Low J, Qu C, et al. Efficacy of retinoids in IKZF1-mutated BCR-ABL1 acute lymphoblastic leukemia. Cancer Cell. 2015;28(3):343-356.
57.Chiaretti S, Vitale A, Cazzaniga G, et al.
Clinico-biological features of 5202 patients with acute lymphoblastic leukemia enrolled in the Italian AIEOP and GIMEMA proto- cols and stratified in age cohorts. Haematologica. 2013;98(11):1702-1710.
58.Stanulla M, Dagdan E, Zaliova M, et al. IKZF1(plus) Defines a new minimal residual disease-dependent very-poor prognostic profile in pediatric B-cell precursor acute lymphoblastic leukemia. J Clin Oncol. 2018;36(12):1240-1249.
59. Den Boer ML, van Slegtenhorst M, De Menezes RX, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classifi- cation study. Lancet Oncol. 2009;10(2):125- 134.
60. Ferrando AA, Neuberg DS, Staunton J, et al. Gene expression signatures define novel oncogenic pathways in T cell acute lym- phoblastic leukemia. Cancer Cell. 2002;1(1):75-87.
61. Gianni F, Belver L, Ferrando A. The genetics and mechanisms of T-cell acute lymphoblas- tic leukemia. Cold Spring Harb Perspect Med. 2020 March 2. [Epub ahead of print]
62. Liu Y, Easton J, Shao Y, et al. The genomic landscape of pediatric and young adult T-lin- eage acute lymphoblastic leukemia. Nat Genet. 2017;49(8):1211-1218.
63. Mansour MR, Abraham BJ, Anders L, et al. Oncogene regulation. An oncogenic super- enhancer formed through somatic mutation of a noncoding intergenic element. Science. 2014;346(6215):1373-1377.
64. Abraham BJ, Hnisz D, Weintraub AS, et al. Small genomic insertions form enhancers that misregulate oncogenes. Nat Commun. 2017;8:14385.
65. Van Vlierberghe P, Ambesi-Impiombato A, Perez-Garcia A, et al. ETV6 mutations in early immature human T cell leukemias. J Exp Med. 2011;208(13):2571-2579.
66. Della Gatta G, Palomero T, Perez-Garcia A, et al. Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL. Nat Med. 2012;18(3):436-440.
67. Zhang J, Ding L, Holmfeldt L, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012;481(7380):157-163.
68. Yui MA, Rothenberg EV. Developmental gene networks: a triathlon on the course to T cell identity. Nat Rev Immunol. 2014;14(8):529-545.
69.Weng AP, Ferrando AA, Lee W, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306(5694):269-271.
to NOTCH1 inhibition in T-cell leukemia.
Nat Med. 2007;13(10):1203-1210.
74. Zenatti PP, Ribeiro D, Li W, et al. Oncogenic IL7R gain-of-function mutations in child- hood T-cell acute lymphoblastic leukemia.
Nat Genet. 2011;43(10):932-939.
75. Kontro M, Kuusanmaki H, Eldfors S, et al. Novel activating STAT5B mutations as puta- tive drivers of T-cell acute lymphoblastic
leukemia. Leukemia. 2014;28(8):1738-1742. 76. Graux C, Stevens-Kroef M, Lafage M, et al. Heterogeneous patterns of amplification of the NUP214-ABL1 fusion gene in T-cell acute lymphoblastic leukemia. Leukemia.
2009;23(1):125-133.
77. Anderson K, Lutz C, van Delft FW, et al.
Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature. 2011;469(7330):356-361.
78. De Bie J, Demeyer S, Alberti-Servera L, et al. Single-cell sequencing reveals the origin and the order of mutation acquisition in T-cell acute lymphoblastic leukemia. Leukemia. 2018;32(6):1358-1369.
79. Ma X, Edmonson M, Yergeau D, et al. Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia. Nat Commun. 2015;6: 6604.
80. Mullighan CG, Zhang J, Kasper LH, et al. CREBBP mutations in relapsed acute lym- phoblastic leukaemia. Nature. 2011;471 (7337):235-239.
81.Li B, Brady SW, Ma X, et al. Therapy- induced mutations drive the genomic land- scape of relapsed acute lymphoblastic leukemia. Blood. 2020;135(1):41-55.
82.Mar BG, Bullinger LB, McLean KM, et al. Mutations in epigenetic regulators including SETD2 are gained during relapse in paedi- atric acute lymphoblastic leukaemia. Nat Commun. 2014;5:3469.
83.Waanders E, Gu Z, Dobson SM, et al. Mutational landscape and patterns of clonal evolution in relapsed pediatric acute lym- phoblastic leukemia. Blood Cancer Disc. 2020;1(1):96-111.
84. Dobson SM, Garcia-Prat L, Vanner RJ, et al. Relapse-fated latent diagnosis subclones in acute B lineage leukemia are drug tolerant and possess distinct metabolic programs. Cancer Disc. 2020;10(4):568-587.
85. Li B, Li H, Bai Y, et al. Negative feedback- defective PRPS1 mutants drive thiopurine resistance in relapsed childhood ALL. Nat Med. 2015;21(6):563-571.
86. Meyer JA, Wang J, Hogan LE, et al. Relapse- specific mutations in NT5C2 in childhood acute lymphoblastic leukemia. Nat Genet. 2013;45(3):290-294.
87. Yang JJ, Cheng C, Devidas M, et al. Ancestry and pharmacogenomics of relapse in acute lymphoblastic leukemia. Nat Genet. 2011;43(3):237-241.
88. Yang JJ, Landier W, Yang W, et al. Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia. J Clin Oncol. 2015;33(11):1235-1242.
89. Karol SE, Larsen E, Cheng C, et al. Genetics of ancestry-specific risk for relapse in acute lymphoblastic leukemia. Leukemia. 2017;31(6):1325-1332.
90. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neo- plasms and acute leukemia. Blood. 2016;127(20):2391-2405.
91. Hrusak O, de Haas V, Stancikova J, et al. International cooperative study identifies treatment strategy in childhood ambiguous
70.
71.
72.
Palomero T, Lim WK, Odom DT, et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci U S A. 2006;103(48): 18261-18266.
Herranz D, Ambesi-Impiombato A, Palomero T, et al. A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia. Nat Med. 2014;20(10):1130-1137. Hebert J, Cayuela JM, Berkeley J, Sigaux F. Candidate tumor-suppressor genes MTS1 (p16INK4A) and MTS2 (p15INK4B) display frequent homozygous deletions in primary cells from T- but not from B-cell lineage acute lymphoblastic leukemias. Blood. 1994;84(12):4038-4044.
73.Palomero T, Sulis ML, Cortina M, et al. Mutational loss of PTEN induces resistance
haematologica | 2020; 105(11)
2537


































































































   47   48   49   50   51