Page 142 - 2020_11-Haematologica-web
P. 142

N.A.G. Graça et al.
29. Feys HB, Roodt J, Vandeputte N, et al.
Thrombotic thrombocytopenic purpura directly linked with ADAMTS13 inhibition in the baboon (Papio ursinus). Blood. 2010;116(12):2005-2010.
30. Alwan F, Vendramin C, Vanhoorelbeke K, et al. Presenting ADAMTS13 antibody and antigen levels predict prognosis in immune- mediated thrombotic thrombocytopenic purpura. Blood. 2017;130(4):466-471.
31. Kokame K, Nobe Y, Kokubo Y, Okayama A, Miyata T. FRETS-VWF73, a first fluorogenic substrate for ADAMTS13 assay. Br J Haematol. 2005;129(1):93-100.
32. Muia J, Zhu J, Gupta G, et al. Allosteric acti- vation of ADAMTS13 by von Willebrand factor. Proc Natl Acad Sci U S A. 2014;111 (52):18584-18589.
33. Akiyama M, Takeda S, Kokame K, Takagi J, Miyata T, Majerus PW. Crystal structures of the noncatalytic domains of ADAMTS13 reveal multiple discontinuous exosites for von Willebrand factor. Proc Natl Acad Sci U S A. 2009;106(46):19274-19279.
34. Bogan AA, Thorn KS. Anatomy of hot spots in protein interfaces. J Mol Biol. 1998;280 (1):1-9.
35. Ferreira De Freitas R, Schapira M. A system- atic analysis of atomic protein-ligand inter- actions in the PDB. Medchemcomm. 2017;8(10):1970-1981.
36. Robin G, Sato Y, Desplancq D, Rochel N, Weiss E, Martineau P. Restricted diversity of
von Willebrand factor. Blood. 2011;118(12):
3212-3221.
43. Petri A, Kim HJ, Xu Y, et al. Crystal structure
and substrate-induced activation of
ADAMTS13. Nat Commun. 2019;10(1):1- Origins of specificity and affinity in anti- 16.
antigen binding residues of antibodies revealed by computational alanine scanning of 227 antibody-antigen complexes. J Mol Biol. 2014;426(22):3729-3743.
37. Peng H-P, Lee KH, Jian J-W, Yang A-S.
body–protein interactions. Proc Natl Acad
Sci U S A. 2014;111(26):E2656-E2665.
38. Zhou W, Dong L, Ginsburg D, Bouhdssira EE, Tsai HM. Enzymatically active ADAMTS13 variants are not inhibited by anti-ADAMTS13 autoantibodies: a novel therapeutic strategy? J Biol Chem. 2005;280
(48):39934-39941.
39. Banno F, Chauhan AK, Kokame K, et al. The
distal carboxyl-terminal domains of ADAMTS13 are required for regulation of in vivo thrombus formation. Blood. 2009;113 (21):5323-5329.
40. Zhu J, Muia J, Gupta G, et al. Exploring the “minimal” structure of a functional ADAMTS13 by mutagenesis and small- angle X-ray scattering. Blood. 2019;133(17): 1909-1918.
41. Zhang P, Pan W, Rux AH, Sachais BS, Zheng XL. The cooperative activity between the carboxyl-terminal TSP1 repeats and the CUB domains of ADAMTS13 is crucial for recognition of von Willebrand factor under flow. Blood. 2007;110(6):1887-1894.
42. Crawley JTB, De Groot R, Xiang Y, Luken BM, Lane DA. Unraveling the scissile bond: how ADAMTS13 recognizes and cleaves
44. South K, Luken BM, Crawley JTB, et al. Conformational activation of ADAMTS13. Proc Natl Acad Sci U S A. 2014;111(52): 18578-18583.
45. South K, Freitas MO, Lane DA. Conformational quiescence of ADAMTS-13 prevents proteolytic promiscuity. J Thromb Haemost. 2016;14(10):2011-2022.
46. South K, Denorme F, Salles-Crawley II, De Meyer SF, Lane DA. Enhanced activity of an ADAMTS-13 variant (R568K/F592Y/ R660K/Y661F/Y665F) against platelet agglu- tination in vitro and in a murine model of acute ischemic stroke. J Thromb Haemost. 2018;16(11):2289-2299.
47. Liu-Chen S, Connolly B, Cheng L, Subramanian RR, Han Z. MRNA treatment produces sustained expression of enzymati- cally active human ADAMTS13 in mice. Sci Rep. 2018;8(1):7859.
48. Goh JB, Ng SK. Impact of host cell line choice on glycan profile. Crit Rev Biotechnol. 2018;38(6):851-867.
49. Werner RG, Kopp K, Schlueter M. Glycosylation of therapeutic proteins in dif- ferent production systems. Acta Paediatr. 2007;96(455):17-22.
2630
haematologica | 2020; 105(11)


































































































   140   141   142   143   144