Page 49 - 2020_09-Haematologica-web
P. 49

Molecular heterogeneity of PK deficiency
2000;275(24):18145-18152.
10. Valentini G, Chiarelli LR, Fortin R, et al.
Structure and function of human erythro- cyte pyruvate kinase. Molecular basis of nonspherocytic hemolytic anemia. J Biol Chem. 2002;277(26):23807-23814.
11. Kung C, Hixon J, Kosinski PA, et al. AG-348 enhances pyruvate kinase activity in red blood cells from patients with pyruvate kinase deficiency. Blood. 2017;130(11):1347- 1356.
12. Jurica MS, Mesecar A, Heath PJ, et al. The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate. Structure. 1998; 6:195-210.
13. Wang C, Chiarelli LR, Bianchi P, et al. Human erythrocyte pyruvate kinase: char- acterization of the recombinant enzyme and a mutant form (R510Q) causing nonsphero- cytic hemolytic anemia. Blood. 2001;98(10): 3113-3120.
14. Kedar P, Hamada T, Warang P, et al. Spectrum of novel mutations in the human PKLR gene in pyruvate kinase-deficient Indian patients with heterogeneous clinical phenotypes. Clin Genet. 2009;75(2):157- 162.
15. Svidnicki MCCM, Santos A, Fernandez JAA, et al. Novel mutations associated with pyru- vate kinase deficiency in Brazil. Rev Bras Hematol Hemoter. 2018;40(1):5-11.
16. Zanella A, Fermo E, Bianchi P, et al. Pyruvate kinase deficiency: the genotype-phenotype association. Blood Rev. 2007;21(4):217-231.
17. Fermo E, Bianchi P, Chiarelli LR, et al. Red cell pyruvate kinase deficiency: 17 new mutations of the PK-LR gene. Br J Haematol. 2005;129(6):839-846.
18. Beutler E. Red Cell Metabolism: A Manual of Biochemical Methods. New York: Grune & Stratton, Inc.; 1984
19. Bianchi P, Fermo E, Glader B, et al; with the endorsement of EuroBloodNet, the European Reference Network in Rare Hematological Diseases. Addressing the diagnostic gaps in pyruvate kinase deficien- cy: consensus recommendations on the diagnosis of pyruvate kinase deficiency. Am J Hematol. 2019;94(1):149-161.
20. Agarwal AM, Nussenzveig RH, Reading NS, et al. Clinical utility of next-generation sequencing in the diagnosis of hereditary haemolytic anaemias. Br J Haematol. 2016;174(5):806-814.
21. Del Orbe Barreto R, Arrizabalaga B, De la Hoz AB, et al. Detection of new pathogenic mutations in patients with congenital haemolytic anaemia using next-generation sequencing. Int J Lab Hematol. 2016;38(6):629-638.
22. Iwasaki T, Yamamoto T, Muramatsu H, et al. Clinical impact of captured-based target- ed sequencing in diagnosis of congenital hemolytic anaemia. Rinsho Ketsueki. 2016;57:1489
23. Roy NB, Wilson EA, Henderson S. A novel 33-gene targeted resequencing panel pro- vides accurate, clinical-grade diagnosis and improves patient management for rare inherited anaemias. Br J Haematol. 2016;175(2):318-330.
24. Fermo E, Vercellati C, Marcello AP, et al. Use of next generation sequencing panel to clari- fy undiagnosed cases of hereditary hemolyt- ic anaemias. Blood. 2017;130 (Supplement 1):3480.
25. Russo R, Andolfo I, Manna F, Gambale A, et al. Multi-gene panel testing improves diag- nosis and management of patients with hereditary anemias. Am J Hematol. 2018;93(5):672-682.
26. Al-Samkari H, van Beers EJ, Kuo KHM, et al. The variable manifestations of disease in pyruvate kinase deficiency and their man- agement. Haematologica. 2020;105(9):2229- 2239.
27. Shefer Averbuch N, Steinberg-Shemer O, Dgany O, et al. Targeted next generation sequencing for the diagnosis of patients with rare congenital anemias. Eur J Haematol. 2018;101(3):297-304.
28. Jamwal M, Aggarwal A, Palodhi A, et al. Next-generation sequencing-based diagno- sis of unexplained inherited hemolytic ane- mias reveals wide genetic and phenotypic heterogeneity. J Mol Diagn. 2020;22(4):579- 590.
29.Qin L, Nie Y, Chen L, et al. Novel PLKR mutations in four families with pyruvate kinase deficiency. Int J Lab Hematol. 2020;42(2):e84-e87.
30. Kedar PS, Harigae H, Ito E, et al. Study of pathophysiology and molecular characteri- zation of congenital anemia in India using targeted next-generation sequencing approach. Int J Hematol. 2019;110(5):618- 626.
31. Kanno H, Fujii H, Miwa S. Structural analy- sis of human pyruvate kinase L-gene and identification of the promoter activity in erythroid cells. Biochem Biophys Res Commun. 1992;188(2):516-523.
32. Noguchi T, Tamada K, Inoue H, et al. The L- and R-type isozymes of rat pyruvate kinase are produced from a single gene by use of different promoters. J Biol Chem. 1987;262(29):14366-14371.
33. Canu G, De Bonis M, Minucci A, Capoluongo E. Red blood cell PK deficiency: an update of PK-LR gene mutation database. Blood Cells Mol Dis. 2016;57:100-109.
34. Grace RF, Bianchi P, van Beers EJ, et al. Clinical spectrum of pyruvate kinase defi- ciency: data from the Pyruvate Kinase Deficiency Natural History Study. Blood. 2018;131(20):2183-2192.
35. Bianchi P, Fermo E, Lezon-Geyda K, et al. Genotype-phenotype correlation and molecular heterogeneity in pyruvate kinase deficiency. Am J Hematol. 2020;95(5):472- 482.
36. Warang P, Kedar P, Ghosh K et al. Molecular and clinical heterogeneity in pyruvate kinase deficiency in India. Blood Cells Mol Dis. 2013;51(3):133-137.
37.Zanella A, Bianchi P. Red cell pyruvate kinase deficiency: from genetics to clinical manifestations. Baillieres Best Pract Res Clin Haematol. 2000;13(1):57-81.
38. Kanno H, Ballas SK, Miwa S, et al. Molecular abnormality of erythrocyte pyruvate kinase deficiency in the Amish. Blood. 1994;83(8):2311-2316.
39.Machado P, Manco L, Gomes C, et al. Pyruvate kinase deficiency in sub-Saharan Africa: identification of a highly frequent missense mutation (G829A;Glu277Lys) and association with malaria. PLoS One. 2012;7:e47071.
40. Baronciani L, Beutler E. Molecular study of pyruvate kinase deficient patients with hereditary nonspherocytic hemolytic ane- mia. J Clin Invest. 1995;95(4):1702-1709. Costa C, Albuisson J, Le TH, et al. Severe hemolytic anemia in a Vietnamese family, associated with novel mutations in the gene encoding for pyruvate kinase. Haematologica. 2005;90(1):25-30.
consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-424.
43. Marcello AP, Vercellati C, Fermo E, et al. A case of congenital red cell pyruvate kinase deficiency associated with hereditary stom- atocytosis. Blood Cells Mol Dis. 2008;41(3): 261-262.
41.
42.
Richards S, Aziz N, Bale S, et al. ACMG Laboratory Quality Assurance Committee.Standards and guidelines for the interpretation of sequence variants: a joint
46. van Wijk R, van Solinge WW, Nerlov C, et al. Disruption of a novel regulatory element in the erythroid‐specific promoter of the human PKLR gene causes severe pyruvate kinase deficiency. Blood. 2003;101(4):1596- 1602.
47. Kager L, Minkov M, Zeitlhofer P, et al. Two novel missense mutations and a 5bp dele- tion in the erythroid-specific promoter of the PKLR gene in two unrelated patients with pyruvate kinase deficient transfusion- dependent chronic nonspherocytic hemolytic anemia. Pediatr Blood Cancer. 2016;63(5):914-916.
48. Pissard S, Max-Audit I, Skopinski L, et al. Pyruvate kinase deficiency in France: a 3- year study reveals 27 new mutations. Br J Haematol. 2006;133(6):683-689.
49. de Vooght KM, van Wijk R, van Wesel AC, et al. Characterization of the -148C>T pro- moter polymorphism in PKLR. Haematologica 2008;93(9):1407-1408.
50. Gallagher PG, Glader B. Diagnosis of pyru- vate kinase deficiency. Pediatr Blood Cancer. 2016;63(5):771-772.
51. Titapiwatanakun R, Hoyer JD, Crain K, et al. Relative red blood cell enzyme levels as a clue to the diagnosis of pyruvate kinase defi- ciency. Pediatr Blood Cancer. 2008;51(6): 819-821.
52. Zanella A, Bianchi P, Baronciani L, et al. Molecular characterization of PK-LR gene in pyruvate kinase-deficient Italian patients. Blood. 1997;89(10):3847-3852.
53. Gallagher PG, Maksimova Y, Lezon-Geyda K, et al. Aberrant splicing contributes to severe a-spectrin-linked congenital hemolytic anemia. J Clin Invest. 2019;129 (7):2878-2887.
54. Grace RF, Rose C, Layton M, et al. Safety and efficacy of mitapivat in pyruvate kinase deficiency. N Engl J Med. 2019;381(10):933- 944.
55. Lezon-Geyda K, Rose MJ, McNaull MA, et al. PKLR intron splicing-associated muta- tions and alternate diagnoses are common in pyruvate kinase deficient patients with sin- gle or no PKLR coding mutations. Blood. 2018;132 (Suppl 1):3607.
56. Bagla S, Bhambhani K, Gadgeel M, et al. Compound heterozygosity in PKLR gene for a previously unrecognized intronic polymor- phism and a rare missense mutation as a novel cause of severe pyruvate kinase defi- ciency. Haematologica. 2019;104(9):e428- e431.
57. Lesmana H, Dyer L, Li X, et al. Alu element insertion in PKLR gene as a novel cause of pyruvate kinase deficiency in Middle Eastern patients. Hum Mutat. 2018;39(3): 389-393.
58. Zurcher C, Loos JA, Prins HK. Hereditary high ATP content of human erythrocytes.
44.Coutinho R, Bento C, Almeida H, et al. Complex inheritance of chronic haemolytic anaemia. Br J Haematol. 2009;144(4):615- 616.
45. Manco L, Ribeiro ML, Maximo V, et al. A new PKLR gene mutation in the R‐type pro- moter region affects the gene transcription causing pyruvate kinase deficiency. Br J Haematol 2000;110(4):993-997.
haematologica | 2020; 105(9)
2227


































































































   47   48   49   50   51