Page 26 - 2020_09-Haematologica-web
P. 26

G. Cario et al.
acute lymphoblastic leukemia treated with
risk-directed therapy based on the levels of minimal residual disease. J Clin Oncol. 2014;32(27):3012-3020.
25. Imamura T, Kiyokawa N, Kato M, et al. Characterization of pediatric Philadelphia negative B-cell precursor acute lymphoblas- tic leukemia with kinase fusions in Japan. Blood Cancer J. 2016;6:e419.
26. Boer JM, Steeghs EM, Marchante JR, et al. Tyrosine kinase fusion genes in pediatric BCRABL1-like acute lymphoblastic leukemia. Oncotarget. 2017;8(3):4618-4628.
27. Herold T, Schneider S, Metzeler KH, et al. Adults with Philadelphia chromosome-like acute lymphoblastic leukemia frequently have IGHCRLF2 and JAK2 mutations, per- sistence of minimal residual disease and poor prognosis. Haematologica. 2017;102 (1):130-138.
28. Jain N, Roberts KG, Jabbour E, et al. Ph-like acute lymphoblastic leukemia: a high-risk subtype in adults. Blood. 2017;129(5):572- 581.
29. Reshmi SC, Harvey RC, Roberts KG, et al. Targetable kinase gene fusions in high-risk B-ALL: a study from the Children’s Oncology Group. Blood. 2017;129(25): 3352-3361.
30. Tran TH, Loh ML. Ph-like acute lymphoblas- tic leukemia. Hematology Am Soc Hematol Educ Program. 2016;2016(1):561-566.
31. Roberts KG, Gu Z, Payne-Turner D, et al. High frequency and poor outcome of philadelphia chromosome-like acute lym- phoblastic leukemia in adults. J Clin Oncol. 2017;35(4):394-401.
32. Roberts KG, Morin RD, Zhang J, et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell. 2012;22(2):153-166.
33. Mullighan CG, Collins-Underwood JR, Phillips LA, et al. Rearrangement of CRLF2 in B-progenitor- and Down syndrome-asso- ciated acute lymphoblastic leukemia. Nat Genet. 2009;41(11):1243-1246.
34. Yoda A, Yoda Y, Chiaretti S, et al. Functional screening identifies CRLF2 in precursor B- cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 2010;107(1):252-257.
35. Cario G, Zimmermann M, Romey R, et al. Presence of the P2RY8-CRLF2 rearrange- ment is associated with a poor prognosis in non-high-risk precursor B-cell acute lym- phoblastic leukemia in children treated according to the ALL-BFM 2000 protocol. Blood. 2010;115(26):5393-5397.
36. Palmi C, Vendramini E, Silvestri D, et al. Poor prognosis for P2RY8-CRLF2 fusion but not for CRLF2 over-expression in children with intermediate risk B-cell precursor acute lymphoblastic leukemia. Leukemia. 2012;26(10):2245-2253.
37. Morak M, Attarbaschi A, Fischer S, et al. Small sizes and indolent evolutionary dynamics challenge the potential role of P2RY8-CRLF2-harboring clones as main relapse-driving force in childhood ALL. Blood. 2012;120(26):5134-5142.
38. Attarbaschi A, Morak M, Cario G, et al. Treatment outcome of CRLF2-rearranged childhood acute lymphoblastic leukaemia: a comparative analysis of the AIEOP-BFM and UK NCRI-CCLG study groups. Br J Haematol. 2012;158(6):772-777.
39. Roberts KG, Yang Y, Turner DP, et al. Oncogenic role and therapeutic targeting of
ABL-class and JAK-STAT activating kinase alterations in Ph-like ALL. Blood Adv. 2017;1(20):1657-1671.
40. Roberts KG, Reshmi SC, Harvey RC, et al. Genomic and outcome analyses of Ph-like ALL in NCI standard-risk patients: a report from the Children's Oncology Group. Blood. 2018;132(8):815-824.
41. Cario G, Leoni V, Conter V, et al. Relapses and treatment-related events contributed equally to poor prognosis in children with ABL-class fusion positive B-cell acute lym- phoblastic leukemia treated according to AIEOP-BFM protocols. Haematologica. 2019 Oct 10. [Epub ahead of print].
42. Chen IM, Harvey RC, Mullighan CG, et al. Outcome modeling with CRLF2, IKZF1, JAK, and minimal residual disease in pedi- atric acute lymphoblastic leukemia: a Children’s Oncology Group study. Blood. 2012;119(15):3512-3522.
43. Ensor HM, Schwab C, Russell LJ, et al. Demographic, clinical, and outcome fea- tures of children with acute lymphoblastic leukemia and CRLF2 deregulation: results from the MRC ALL97 clinical trial. Blood. 2011;117(7):2129-2136.
44. Maude SL, Tasian SK, Vincent T, et al. Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lym- phoblastic leukemia. Blood. 2012;120(17): 3510-3518.
45. Tasian SK, Doral MY, Borowitz MJ, et al. Aberrant STAT5 and PI3K/mTOR pathway signaling occurs in human CRLF2- rearranged B-precursor acute lymphoblastic leukemia. Blood. 2012;120(4):833-842.
46. Suryani S, Bracken LS, Harvey RC, et al. Evaluation of the in vitro and in vivo efficacy of the JAK inhibitor AZD1480 against JAK- mutated acute lymphoblastic leukemia. Mol Cancer Ther. 2015;14(2):364-374.
47. Tasian SK, Teachey DT, Li Y, et al. Potent efficacy of combined PI3K/mTOR and JAK or ABL inhibition in murine xenograft mod- els of Ph-like acute lymphoblastic leukemia. Blood. 2017;129(2):177-187.
48. van Bodegom D, Zhong J, Kopp N, et al. Differences in signaling through the B-cell leukemia oncoprotein CRLF2 in response to TSLP and through mutant JAK2. Blood. 2012;120(14):2853-2863.
49. Weigert O, Lane AA, Bird L, et al. Genetic resistance to JAK2 enzymatic inhibitors is overcome by HSP90 inhibition. J Exp Med. 2012;209(2):259-273.
50. Wu SC, Li LS, Kopp N, et al. Activity of the type II JAK2 inhibitor CHZ868 in B cell acute lymphoblastic leukemia. Cancer Cell. 2015; 28(1):29-41.
51. Koppikar P1, Bhagwat N, Kilpivaara O, et al. Heterodimeric JAK-STAT activation as a mechanism of persistence to JAK2 inhibitor therapy. Nature. 2012;489(7414):155-159.
52. Roberts KG, Morin RD, Zhang J, et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell. 2012;22(2):153-166.
53. Loh ML, Tasian SK, Rabin KR, et al. A phase 1 dosing study of ruxolitinib in children with relapsed or refractory solid tumors, leukemias, or myeloproliferative neoplasms: A Children's Oncology Group phase 1 con- sortium study (ADVL1011). Pediatr Blood Cancer. 2015;62(10):1717-1724.
54. Lengline E, Beldjord K, Dombret H, et al. Successful tyrosine kinase inhibitor therapy
in a refractory B-cell precursor acute lym- phoblastic leukemia with EBF1PDGFRB fusion. Haematologica. 2013;98(11):146- 148.
55. Weston BW, Hayden MA, Roberts KG, et al. Tyrosine kinase inhibitor therapy induces remission in a patient with refractory EBF1PDGFRB-positive acute lymphoblastic leukemia. J Clin Oncol. 2013;31 (25):413- 416.
56. Tanasi I, Ba I, Sirvent N, et al. Efficacy of tyrosine kinase Inhibitors in Ph-like acute lymphoblastic leukemia harboring ABL- class rearrangements. Blood. 2019;134(16): 1351-1355.
57. Tasian SK, Loh ML, Hunger SP. Philadelphia chromosome-like acute lymphoblastic leukemia. Blood. 2017;130(19): 2064-2072.
58. Schwab C, Ryan SL, Chilton L, et al. EBF1- PDGFRB fusion in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL): genetic profile and clinical implications. Blood. 2016;127(18):2214-2218.
59. Grioni, A, Fazio G, Rigamonti S, et al. A sim- ple RNA target capture NGS strategy for fusion genes assessment in the diagnostics of pediatric B-cell acute lymphoblastic leukemia. HemaSphere. 2019;3(3):e250.
60. Gu Z, Churchman ML, Roberts KG, et al. PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nat Genet. 2019;51(2):296-307.
61. Li JF, Dai YT, Lilljebjörn H, et al. Transcriptional landscape of B cell precursor acute lymphoblastic leukemia based on an international study of 1,223 cases. Proc Natl Acad Sci U S A. 2018;115(50):11711-11720.
62. Maese L, Tasian SK, Raetz EA. How is the Ph-like signature being incorporated into therapy? Best Pract Res Clin Haematol. 2017;30(3):222-228.
63. Jain N, Jabbour EJ, McKay PZ, et al. Ruxolitinib or dasatinib in combination with chemotherapy for patients with relapsed/refractory Philadelphia (Ph)-like acute lymphoblastic leukemia: a phase I-II trial. Blood. 2017;130(suppl 1):1322.
64. Curran E, Stock W. How I treat acute lym- phoblastic leukemia in older adolescents and young adults. Blood. 2015;125(24):3702- 3710.
65. Stock W, Luger SM, Advani AS, et al. A pedi- atric regimen for older adolescents and young adults with acute lymphoblastic leukemia: results of CALGB 10403. Blood. 2019;133(14):1548-1559.
66. Stanulla M, Dagdan E, Zaliova M, et al. IKZF1plus defines a new minimal residual disease-dependent very-poor prognostic profile in pediatric B-cell precursor acute lymphoblastic leukemia. J Clin Oncol. 2018;36(12):1240-1249.
67. Hunger SP, Saha V, Devidas M, et al. CA180- 372: An international collaborative phase 2 trial of dasatinib and chemotherapy in pedi- atric patients with newly diagnosed Philadelphia chromosome positive acute lymphoblastic leukemia (Ph+ ALL) Blood. 2017;130 (Supplement 1):98.
68. Shen S, Chen X, Cai J, et al. Effect of dasa- tinib vs imatinib in the treatment of pedi- atric Philadelphia chromosome-positive acute lymphoblastic leukemia: a random- ized clinical trial. JAMA Oncol. 2020 Jan 16. [Epub ahead of print].
69. Elitzur S, Izraeli S. Genomic precision medi- cine: on the TRK. Blood. 2018;132(8):773- 774.
2204
haematologica | 2020; 105(9)


































































































   24   25   26   27   28