Page 147 - 2020_09-Haematologica-web
P. 147

RAL GTPases mediate multiple myeloma cell survival
References
1. Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ. Drugging the undruggable RAS: Mission Possible? Nat Rev Drug Discov. 2014;13(11):828-851.
2. Stephen AG, Esposito D, Bagni RK, McCormick F. Dragging Ras back in the ring. Cancer Cell. 2014;25(3):272-281.
3. Athuluri-Divakar SK, Vasquez-Del Carpio R, Dutta K, et al. A small molecule RAS- mimetic disrupts RAS association with effector proteins to block signaling. Cell. 2016;165(3):643-655.
4. McCormick F. K-Ras protein as a drug tar- get. J Mol Med. 2016;94(3):253-258.
5. BeeramM,PatnaikA,RowinskyEK.Raf:A strategic target for therapeutic develop- ment against cancer. J Clin Oncol. 2005; 23(27):6771-6790.
6. Baines AT, Xu D, Der CJ. Inhibition of Ras for cancer treatment: the search continues. Future Med Chem. 2011;3(14):1787-1808.
7. Mandal R, Becker S, Strebhardt K. Stamping out RAF and MEK1/2 to inhibit the ERK1/2 pathway: an emerging threat to anticancer therapy. Oncogene. 2016; 35(20):2547-2561.
8. Steinbrunn T, Stühmer T, Gattenlöhner S, et al. Mutated RAS and constitutively acti- vated Akt delineate distinct oncogenic pathways, which independently contribute to multiple myeloma cell survival. Blood. 2011;117(6):1998-2004.
9. Lionetti M, Barbieri M, Todoerti K, et al. Molecular spectrum of BRAF, NRAS and KRAS gene mutations in plasma cell dyscrasias: implication for MEK-ERK path-
way activation. Oncotarget. 2015; 6(27):24205-24217.
10. Walker BA, Boyle EM, Wardell CP, et al. Mutational spectrum, copy number changes, and outcome: results of a sequenc- ing study of patients with newly diagnosed myeloma. J Clin Oncol. 2015;33(33):3911- 3920.
11. Steinbrunn T, Stühmer T, Sayehli C, et al. Combined targeting of MEK/MAPK and PI3K/Akt signalling in multiple myeloma. Br J Haematol. 2012;159(4):430-440.
12. Hofmann C, Stühmer T, Schmiedl N, et al. PI3K-dependent multiple myeloma cell sur- vival is mediated by the PIK3CA isoform. Br J Haematol. 2014;166(4):529-539.
13. Munugalavadla V, Mariathasan S, Slaga D, et al. The PI3K inhibitor GDC-0941 com- bines with existing clinical regimens for superior activity in multiple myeloma. Oncogene. 2014;33(3):316-325.
14. MüllerE,BauerS,StühmerT,etal.Pan-Raf co-operates with PI3K-dependent signalling and critically contributes to myeloma cell survival independently of mutated RAS. Leukemia. 2017;31(4):922-933.
15. Xu J, Pfarr N, Endris V, et al. Molecular sig- naling in multiple myeloma: association of RAS/RAF mutations and MEK/ERK path- way activation. Oncogenesis. 2017; 6(5):e337.
16. McMillin DW, Ooi M, Delmore J, et al. Antimyeloma activity of the orally bioavailable dual phosphatidylinositol 3- kinase/mammalian target of rapamycin inhibitor NVP-BEZ235. Cancer Res. 2009; 69(14):5835-5842.
17. Mayer IA, Arteaga CL. The PI3K/AKT pathway as a target for cancer treatment. Annu Rev Med. 2016;67(1):11-28.
18. Ramakrishnan V, Kumar S. PI3K/AKT/mTOR pathway in multiple myeloma: from basic biology to clinical
promise. Leuk Lymphoma. 2018;
59(11):2524-2334.
19. Breitkreutz I, Podar K, Figueroa-Vazquez V,
et al. The orally available multikinase inhibitor regorafenib (BAY 73-4506) in mul- tiple myeloma. Ann Hematol. 2018; 97(5):839-849.
20. Chang-Yew Leow C, Gerondakis S, Spencer A. MEK inhibitors as a chemother- apeutic intervention in multiple myeloma. Blood Cancer J. 2013;3(3):e105.
21. Holkova B, Zingone A, Kmieciak M, et al. A phase II trial of AZD6244 (Selumetinib, ARRY-142886), an oral MEK1/2 inhibitor, in relapsed/refractory multiple myeloma. Clin Cancer Res. 2016;22(5):1067-1075.
22. Ramakrishnan V, D’Souza A. Signaling pathways and emerging therapies in multi- ple myeloma. Curr Hematol Malig Rep. 2016;11(2):156-164.
23. Bedard PL, Tabernero J, Janku F, et al. A phase Ib dose-escalation study of the oral Pan-PI3K inhibitor buparlisib (BKM120) in combination with the oral MEK1/2 inhibitor trametinib (GSK1120212) in patients with selected advanced solid tumors. Clin Cancer Res. 2015;21(4):730- 738.
24. Tolcher AW, Patnaik A, Papadopoulos KP, et al. Phase I study of the MEK inhibitor trametinib in combination with the AKT inhibitor afuresertib in patients with solid tumors and multiple myeloma. Cancer Chemother Pharmacol. 2015;75(1):183- 189.
25. Grilley-Olson JE, Bedard PL, Fasolo A, et al. A phase Ib dose-escalation study of the MEK inhibitor trametinib in combination with the PI3K/mTOR inhibitor GSK2126458 in patients with advanced solid tumors. Invest New Drugs. 2016; 34(6):740-749.
26. Wainberg ZA, Alsina M, Soares HP, et al. A multi-arm phase I study of the PI3K/mTOR inhibitors PF-04691502 and gedatolisib (PF- 05212384) plus irinotecan or the MEK inhibitor PD-0325901 in advanced cancer. Target Oncol. 2017;12(6):775-785.
27. Rodriguez-Viciana P, McCormick F. RalGDS comes of age. Cancer Cell. 2005; 7(3):205-206.
28. Thomas JC, Cooper JM, Clayton NS, et al. Inhibition of Ral GTPases using a stapled peptide approach. J Biol Chem. 2016; 291(35):18310-18325.
29. Yan C, Theodorescu D. RAL GTPases: biol- ogy and potential as therapeutic targets in cancer. Pharmacol Rev. 2018;70(1):1-11.
30. Rangarajan A, Hong SJ, Gifford A, Weinberg RA. Species- and cell type-specif- ic requirements for cellular transformation. Cancer Cell. 2004;6(2):171-183.
31. Lim K-H, O’Hayer K, Adam SJ, et al. Divergent roles for RalA and RalB in malignant growth of human pancreatic carcinoma cells. Curr Biol. 2006;16(24): 2385-2394.
32. Martin TD, Der CJ. Differential involve- ment of RalA and RalB in colorectal cancer. Small GTPases. 2012;3(2):126-130.
33. Stühmer T, Arts J, Chatterjee M, et al. Preclinical anti-myeloma activity of the novel HDAC-inhibitor JNJ-26481585. Br J Haematol. 2010;149(4):529-536.
34. Steinbrunn T, Chatterjee M, Bargou RC, Stühmer T. Efficient transient transfection of human multiple myeloma cells by eec- troporation - an appraisal. PLoS One. 2014; 9(6):e97443.
35. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short inter-
fering RNAs in mammalian cells. Science.
2002;296(5567):550-553.
36. Lim K-H, Baines AT, Fiordalisi JJ, et al.
Activation of RalA is critical for Ras- induced tumorigenesis of human cells. Cancer Cell. 2005;7(6):533-545.
37. Oxford G, Owens CR, Titus BJ, et al. RalA and RalB: rntagonistic Relatives in cancer cell migration. Cancer Res. 2005; 65(16):7111-7120.
38. Cox J, Hein MY, Luber CA, et al. Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ. Mol Cell Proteomics. 2014;13(9):2513- 2526.
39. Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and pro- teome-wide protein quantification. Nat Biotechnol. 2008;26(12):1367-1372.
40. Liberzon A, Birger C, Thorvaldsdóttir H, et al. The molecular signatures database hall- mark gene set collection. Cell Syst. 2015; 1(6):417-425.
41. Yan C, Liu D, Li L, et al. Discovery and characterization of small molecules that target the GTPase Ral. Nature. 2014;515(7527):443-447.
42. Walsh TG, Wersäll A, Poole AW. Characterisation of the Ral GTPase inhibitor RBC8 in human and mouse platelets. Cell Signal. 2019;59:34-40.
43. López Y, Nakai K, Patil A. HitPredict ver- sion 4: comprehensive reliability scoring of physical protein–protein interactions from more than 100 species. Database (Oxford). 2015;2015.
44. Shin H, Kaplan REW, Duong T, Fakieh R, Reiner DJ. Ral signals through a MAP4 kinase-p38 MAP kinase cascade in C. ele- gans cell fate patterning. Cell Rep. 2018; 24(10):2669-2681.
45. González-García A, Pritchard CA, Paterson HF, et al. RalGDS is required for tumor for- mation in a model of skin carcinogenesis. Cancer Cell. 2005;7(3):219-226.
46. Mishra PJ, Ha L, Rieker J, et al. Dissection of RAS downstream pathways in melanomagenesis: a role for Ral in transfor- mation. Oncogene. 2010;29(16):2449-2456.
47. Yin J, Pollock C, Tracy K, et al. Activation of the RalGEF/Ral pathway promotes prostate cancer metastasis to bone. Mol Cell Biol. 2007;27(21):7538-7550.
48. Guin S, Theodorescu D. The RAS-RAL axis in cancer: evidence for mutation-specific selectivity in non-small cell lung cancer. Acta Pharmacol Sin. 2015;36(3):291-297.
49. Chapman MA, Lawrence MS, Keats JJ, et al. Initial genome sequencing and analysis of multiple myeloma. Nature. 2011; 471(7339):467-472.
50. Lohr JG, Stojanov P, Carter SL, et al. Widespread genetic heterogeneity in multi- ple myeloma: implications for targeted therapy. Cancer Cell. 2014;25(1):91-101.
51. Leich E, Weißbach S, Klein H-U, et al. Multiple myeloma is affected by multiple and heterogeneous somatic mutations in adhesion- and receptor tyrosine kinase sig- naling molecules. Blood Cancer J. 2013; 3(2):e102-e102.
52. Zipfel PA, Brady DC, Kashatus DF, et al. Ral activation promotes melanomagenesis. Oncogene. 2010;29(34):4859-4864.
53. Wang H, Owens C, Chandra N, et al. Phosphorylation of RalB is important for bladder cancer cell growth and metastasis. Cancer Res. 2010;70(21):8760-8769.
54. Bodempudi V, Yamoutpoor F, Pan W, et al.
haematologica | 2020; 105(9)
2325


































































































   145   146   147   148   149